
MATH 3150 Problem Set 5 Fall 2023

Be sure to fully justify your response to each problem by citing any results in the text that
you use and by writing out additional arguments as needed.

1. (10 pts) Determine the values of a for which lim
n→+∞

(
1 +

a

n

)n
is finite, and give a formula

for the limit for those values of a.

Solution: Note that for n > |a| we have 1 + a/n > 0. Then ln(1 + a/n), and we can
consider the sequence ln [(1 + a/n)n] = n ln [1 + a/n]. The first step is to find the limit
limn→∞ n ln [1 + a/n].

lim
n→∞

n ln [1 + a/n] = lim
n→∞

ln [1 + a/n]

1/n

= lim
n→∞

(
1

1+a/n

)
(−a/n2)

−1/n2

= lim
n→∞

a

(
1

1 + a/n

)
= a

(
1

1 + 0

)
= a

where the second line follows from the first line by using L’Hosptial’s rule.
Since ex is a continuous function and the sequence n ln[1 + a/n] converges to a, we

have that

(1) lim
n→∞

en ln[1+a/n] = ea

The result now follows from equation (1) and the property that eln(y) = y for all y ∈ R
from which it follows that

en ln[1+a/n] = eln(1+a/n)n = (1 + a/n)n

2. (15 pts) Let f be a function defined on R. Suppose there exists p > 1 with the property
that |f(x)− f(y)| ≤ |x− y|p for all x, y ∈ R. Prove that f is a constant function.

Solution: Let x0 ∈ R, then∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤ |x− x0|p−1 for all x ∈ R, x ̸= x0

Since p − 1 > 0, we have limx→x0 |x − x0|p−1 = 0. From the squeeze lemma applied to
the inequality

0 ≤
∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤ |x− x0|p−1

it now follows that

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= 0 for all x0 ∈ R
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and the result follows since a consequence of the Mean Value Theorem is that if the
derivative of function is 0 for all x in an open interval, then the function is constant on
that open interval.

3. (10 pts) Let f be a function that is differentiable on an open interval (a, b). Show that
if there is a number M > 0 such that

|f ′(x)| ≤ M for all x ∈ (a, b)

then f is uniformly continuous on (a, b).

Solution: From the definition of uniform continuity, it suffices to show that given any
ϵ > 0 there is a δ > 0 such that

|f(x)− f(y)| < ϵ for all x, y ∈ (a, b) with |x− y| < δ

This can be done as follows. Let ϵ > 0 be given and choose δ = ϵ/M . Let x and y be
elements in (a, b) with x ̸= y. Then by the Mean Value Theorem

f(x)− f(y)

x− y
= f ′(c) for some c between x and y

then since |f ′(c) ≤ M , it follows that for |x− y| < δ = ϵ/M we have

|f(x)− f(y)| ≤ M |x− y| < M
( ϵ

M

)
= ϵ

and the proof is complete.

4. (15 pts) Suppose f is a continuous function on [a, b] and differentiable on the interior
(a, b) with constant derivative f ′(x) = M . Prove using the Mean Value Theorem that
f(x) is a linear function (i.e., there are constants A,B such that f(x) = Ax+B).

Solution: Let L(x) = f(a) + M(x − a) = f(a) − Ma + Mx, then L(x) has the form
Ax+B with A = f(a)−Ma and B = M . Thus, it suffices to show that L(x) = f(x) for
all x ∈ [a, b].

Set h(x) = L(x)− f(x). Note that h is continuous on [a, b], and differentiable on (a, b)
with

(2) h′(c) = L′(c)− f ′(c) = M −M = 0 for all c ∈ (a, b).

Moreover, h(a) = L(a)− f(a) = f(a) +M(a− a)− f(a) = 0.
Now let x ∈ (a, b] then by the Mean Value theorem

h(x)− h(a)

x− a
= h′(c) for some c ∈ (a, x)

From equation (2) we have h′(c) = 0, so h(x) − h(a) = 0 for all x ∈ (a, b]. Thus,
h(x) = h(a) for all x ∈ (a, b], and we have

h(x) = h(a) = L(a)− f(a) = 0 for all x ∈ (a, b]

Since h(x) = L(x) − f(x), we have that L(x) = f(x) for all x ∈ (a, b]. Moreover, since
L(a) = f(a), it follows that L(x) = f(x) for all x ∈ [a, b], and the proof is complete.
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5. Let f(x) = ln(1 + x), let
∞∑
n=0

anx
n be the Taylor series for f , and let Rn(x) be the

remainder Rn(x) = ln(1 + x)−
n−1∑
k=0

akx
k for x > −1.

(a) (10 pts) Using the formula for Rn(x) in §31.3 Taylor’s Theorem (p. 250), find an
upper bound for |Rn(x)|.
Solution: By §31.3 Taylor’s Theorem we have∣∣∣∣∣ln(1 + x)−

n−1∑
k=0

akx
k

∣∣∣∣∣ = |Rn(x)| =
∣∣∣∣(f (n)(y)

n!

)
xn

∣∣∣∣
for some y between 0 and x. Note that f (1)(x) = (1 + x)−1. If we assume that
f (n)(x) = (−1)n−1[(n− 1)!](1 + x)−n, then

f (n+1)(x) = (−1)n−1[(n− 1)!](−n)(1 + x)−(n+1)

= (−1)n[n!](1 + x)−(n+1)

So it follows by mathematical induction that f (n)(x) = (−1)n−1[(n − 1)!](1 + x)−n,
and hence,

|Rn(x)| =
∣∣∣∣(f (n)(y)

n!

)
xn

∣∣∣∣
=

∣∣∣∣ (n− 1)!

(n!)(1 + y)n
xn

∣∣∣∣
=

∣∣∣∣( 1

n

)(
x

1 + y

)n∣∣∣∣
for some y between 0 and x.

Now note that ln(1+x) is defined only for x > −1 so 1+y > 0 and since the derivative
with respect to y of (1 + y)−n is (−n)(1 + y)−(n+1) we then have that (1 + y)−n is a
decreasing function of y, and hence its maximum value over any closed interval is its
value at the left hand end point of the interval.

If x > 0, then the interval is [0, x], so the left hand end point is 0. In this case, we
have (1 + y)−n ≤ (1 + 0)−n = 1, and hence

(3) |Rn(x)| ≤
xn

n
for x > 0

If −1 < x < 0 then the interval is [x, 0], the left hand end point is x. In this case,
we have (1 + y)−n ≤ (1 + x)−n, and hence

(4) |Rn(x)| ≤
(
1

n

) ∣∣∣∣ x

1 + x

∣∣∣∣n for −1 < x < 0

The upper bound for |Rn(x)| is given by the inequality in equation (3) in the case
x > 0 and by the inequality in equation (4) in the case −1 < x < 0.
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(b) (10 pts) Find all values of x > −1 for which it follows from your result in part (a)
that limn→+∞ Rn(x) = 0.

Solution: As a first step, note that

(5) lim
n→∞

∣∣∣∣rnn
∣∣∣∣ = 0 if and only if |r| ≤ 1

To prove the result in equation (5) note that if |r| ≤ 1, then 0 ≤ |r|n/n ≤ 1/n and
the result follows from the squeeze lemma. If |r| > 1, then L’Hospital’s rule applies.
d(|r|n)/dn = ln |r| · rn. Thus, it follows from L’Hospital’s rule that limn→∞ |r|n/n =
+∞, and the proof of the result in equation (5) is complete.

From equations (3) and (5) it follows that for x > 0, we have limn→∞Rn(x) = 0 if
and only if 0 < x ≤ 1.

From equations (4) and (5) it follows that for −1 < x < 0, we have limn→infty Rn(x) =
0 if and only if |x/(1 + x)| ≤ 1. Note that for −1 < x < 0 we have |x| = −x and
1 + x > 0. Thus ∣∣∣∣ x

1 + x

∣∣∣∣ = −x

1 + x

so the condition that |x/(1 + x)| ≤ 1 is the same as

−x

1 + x
≤ 1

−x ≤ 1 + x

0 ≤ 1 + 2x

−1 ≤ 2x

−1

2
≤ x

Thus, the values of x for which it follows that from the result in part (a) that
limn→∞Rn(x) = 0 is the closed interval [−1/2, 1].

6. Consider the function f : R → R defined by

f(x) =

x sin
( 1

2πx

)
, if x ̸= 0,

0 if x = 0.

(a) (10 pts) Is f continuous?

Solution: Answer: Yes. We will show that f is continuous at every x0 ∈ R, that is,

(6) lim
x→x0

f(x) = x0.

If x0 ̸= 0, then clearly limx→x0 x = x0. Moreover, limx→x0 sin
(

1
2πx

)
= sin

(
1

2πx0

)
, since

both the sine function and the function x 7→ 1
2πx

are continuous. Since products of
continuous functions are continuous, (6) holds when x0 ̸= 0.
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It remains to show that (6) holds when x0 = 0. First note the following. For all
x ̸= 0, we have

|f(x)| =
∣∣∣∣x sin( 1

2πx

)∣∣∣∣ = |x|
∣∣∣∣sin( 1

2πx

)∣∣∣∣ ≤ |x|.

Moreover, |f(0)| = 0 ≤ 0. Thus, |f(x)| ≤ |x| for all x ∈ R. Therefore,
0 ≤ lim

x→0
|f(x)| ≤ lim

x→0
|x| = 0,

and so limx→0 |f(x)| = 0 by the Squeeze Theorem for limits of sequences. This implies
limx→0 f(x) = 0, and this completes the proof of the claim.

(b) (10 pts) Is the restriction of f to the interval [−1, 1] uniformly continuous?

Solution: Since the map f is continuous for all x ∈ R, it is also the case that f is
continuous for all −1 ≤ x ≤ 1; that is, the restriction of f to the interval [−1, 1] is
also continuous. Furthermore, note that the interval [−1, 1] is closed.

Now, every continuous function defined on a closed interval is uniformly continu-
ous (Theorem 19.2 in the book). Therefore, restriction of f to the interval [−1, 1]
uniformly continuous.

(c) (10 pts) Is f differentiable?

Solution: Answer: No. More precisely, the function f is differentiable at any point
x0 ̸= 0, since the sine function is differentiable, and the fact that differentiability
is preserved under composition and multiplication. But f is not differentiable at
x0 = 0. Indeed, the Newton quotient at 0 is equal to

f(x)− f(0)

x− 0
=

x sin
(

1
2πx

)
x

= sin

(
1

2πx

)
,

and

lim
x→0

sin

(
1

2πx

)
does not exist. To see why that is the case, take for instance the sequence xn = 1

4π2n
,

which converges to 0. Then

lim
n→∞

sin

(
1

2π 1
4π2n

)
= lim

n→∞
sin(2πn) = lim

n→∞
0 = 0.

On the other hand, if we take the sequence xn = 1
π2(4n+1)

, which also converges to 0,

then

lim
n→∞

sin

(
1

2π 1
π2(4n+1)

)
= lim

n→∞
sin

(
π(4n+ 1)

2

)
= lim

n→∞
sin
(
2nπ +

π

2

)
= lim

n→∞
1 = 1.

This completes the proof that limx→0 sin
(

1
2πx

)
does not exist, and thus, that the

function f is not differentiable at 0.


