Be sure to fully justify your response to each problem by citing any results in the text that you use and by writing out additional arguments as needed.

1. (10 pts) Determine the values of a for which $\lim _{n \rightarrow+\infty}\left(1+\frac{a}{n}\right)^{n}$ is finite, and give a formula for the limit for those values of a.
Solution: Note that for $n>|a|$ we have $1+a / n>0$. Then $\ln (1+a / n)$, and we can consider the sequence $\ln \left[(1+a / n)^{n}\right]=n \ln [1+a / n]$. The first step is to find the limit $\lim _{n \rightarrow \infty} n \ln [1+a / n]$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln [1+a / n] & =\lim _{n \rightarrow \infty} \frac{\ln [1+a / n]}{1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{1+a / n}\right)\left(-a / n^{2}\right)}{-1 / n^{2}} \\
& =\lim _{n \rightarrow \infty} a\left(\frac{1}{1+a / n}\right) \\
& =a\left(\frac{1}{1+0}\right) \\
& =a
\end{aligned}
$$

where the second line follows from the first line by using L'Hosptial's rule.
Since e^{x} is a continuous function and the sequence $n \ln [1+a / n]$ converges to a, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e^{n \ln [1+a / n]}=e^{a} \tag{1}
\end{equation*}
$$

The result now follows from equation (1) and the property that $e^{\ln (y)}=y$ for all $y \in \mathbb{R}$ from which it follows that

$$
e^{n \ln [1+a / n]}=e^{\ln (1+a / n)^{n}}=(1+a / n)^{n}
$$

2. (15 pts) Let f be a function defined on \mathbb{R}. Suppose there exists $p>1$ with the property that $|f(x)-f(y)| \leq|x-y|^{p}$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.
Solution: Let $x_{0} \in \mathbb{R}$, then

$$
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right| \leq\left|x-x_{0}\right|^{p-1} \quad \text { for all } x \in R, x \neq x_{0}
$$

Since $p-1>0$, we have $\lim _{x \rightarrow x_{0}}\left|x-x_{0}\right|^{p-1}=0$. From the squeeze lemma applied to the inequality

$$
0 \leq\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right| \leq\left|x-x_{0}\right|^{p-1}
$$

it now follows that

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=0 \quad \text { for all } x_{0} \in \mathbb{R}
$$

and the result follows since a consequence of the Mean Value Theorem is that if the derivative of function is 0 for all x in an open interval, then the function is constant on that open interval.
3. (10 pts) Let f be a function that is differentiable on an open interval (a, b). Show that if there is a number $M>0$ such that

$$
\left|f^{\prime}(x)\right| \leq M \quad \text { for all } x \in(a, b)
$$

then f is uniformly continuous on (a, b).
Solution: From the definition of uniform continuity, it suffices to show that given any $\epsilon>0$ there is a $\delta>0$ such that

$$
|f(x)-f(y)|<\epsilon \quad \text { for all } x, y \in(a, b) \text { with }|x-y|<\delta
$$

This can be done as follows. Let $\epsilon>0$ be given and choose $\delta=\epsilon / M$. Let x and y be elements in (a, b) with $x \neq y$. Then by the Mean Value Theorem

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(c) \quad \text { for some } c \text { between } x \text { and } y
$$

then since $\mid f^{\prime}(c) \leq M$, it follows that for $|x-y|<\delta=\epsilon / M$ we have

$$
|f(x)-f(y)| \leq M|x-y|<M\left(\frac{\epsilon}{M}\right)=\epsilon
$$

and the proof is complete.
4. (15 pts) Suppose f is a continuous function on $[a, b]$ and differentiable on the interior (a, b) with constant derivative $f^{\prime}(x)=M$. Prove using the Mean Value Theorem that $f(x)$ is a linear function (i.e., there are constants A, B such that $f(x)=A x+B)$.
Solution: Let $L(x)=f(a)+M(x-a)=f(a)-M a+M x$, then $L(x)$ has the form $A x+B$ with $A=f(a)-M a$ and $B=M$. Thus, it suffices to show that $L(x)=f(x)$ for all $x \in[a, b]$.

Set $h(x)=L(x)-f(x)$. Note that h is continuous on $[a, b]$, and differentiable on (a, b) with

$$
\begin{equation*}
h^{\prime}(c)=L^{\prime}(c)-f^{\prime}(c)=M-M=0 \quad \text { for all } c \in(a, b) \tag{2}
\end{equation*}
$$

Moreover, $h(a)=L(a)-f(a)=f(a)+M(a-a)-f(a)=0$.
Now let $x \in(a, b]$ then by the Mean Value theorem

$$
\frac{h(x)-h(a)}{x-a}=h^{\prime}(c) \quad \text { for some } c \in(a, x)
$$

From equation (2) we have $h^{\prime}(c)=0$, so $h(x)-h(a)=0$ for all $x \in(a, b]$. Thus, $h(x)=h(a)$ for all $x \in(a, b]$, and we have

$$
h(x)=h(a)=L(a)-f(a)=0 \quad \text { for all } x \in(a, b]
$$

Since $h(x)=L(x)-f(x)$, we have that $L(x)=f(x)$ for all $x \in(a, b]$. Moreover, since $L(a)=f(a)$, it follows that $L(x)=f(x)$ for all $x \in[a, b]$, and the proof is complete.
5. Let $f(x)=\ln (1+x)$, let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be the Taylor series for f, and let $R_{n}(x)$ be the remainder $R_{n}(x)=\ln (1+x)-\sum_{k=0}^{n-1} a_{k} x^{k}$ for $x>-1$.
(a) (10 pts) Using the formula for $R_{n}(x)$ in $\S 31.3$ Taylor's Theorem (p. 250), find an upper bound for $\left|R_{n}(x)\right|$.
Solution: By §31.3 Taylor's Theorem we have

$$
\left|\ln (1+x)-\sum_{k=0}^{n-1} a_{k} x^{k}\right|=\left|R_{n}(x)\right|=\left|\left(\frac{f^{(n)}(y)}{n!}\right) x^{n}\right|
$$

for some y between 0 and x. Note that $f^{(1)}(x)=(1+x)^{-1}$. If we assume that $f^{(n)}(x)=(-1)^{n-1}[(n-1)!](1+x)^{-n}$, then

$$
\begin{aligned}
f^{(n+1)}(x) & =(-1)^{n-1}[(n-1)!](-n)(1+x)^{-(n+1)} \\
& =(-1)^{n}[n!](1+x)^{-(n+1)}
\end{aligned}
$$

So it follows by mathematical induction that $f^{(n)}(x)=(-1)^{n-1}[(n-1)!](1+x)^{-n}$, and hence,

$$
\begin{aligned}
\left|R_{n}(x)\right| & =\left|\left(\frac{f^{(n)}(y)}{n!}\right) x^{n}\right| \\
& =\left|\frac{(n-1)!}{(n!)(1+y)^{n}} x^{n}\right| \\
& =\left|\left(\frac{1}{n}\right)\left(\frac{x}{1+y}\right)^{n}\right|
\end{aligned}
$$

for some y between 0 and x.
Now note that $\ln (1+x)$ is defined only for $x>-1$ so $1+y>0$ and since the derivative with respect to y of $(1+y)^{-n}$ is $(-n)(1+y)^{-(n+1)}$ we then have that $(1+y)^{-n}$ is a decreasing function of y, and hence its maximum value over any closed interval is its value at the left hand end point of the interval.
If $x>0$, then the interval is $[0, x]$, so the left hand end point is 0 . In this case, we have $(1+y)^{-n} \leq(1+0)^{-n}=1$, and hence

$$
\begin{equation*}
\left|R_{n}(x)\right| \leq \frac{x^{n}}{n} \quad \text { for } x>0 \tag{3}
\end{equation*}
$$

If $-1<x<0$ then the interval is $[x, 0]$, the left hand end point is x. In this case, we have $(1+y)^{-n} \leq(1+x)^{-n}$, and hence

$$
\begin{equation*}
\left|R_{n}(x)\right| \leq\left(\frac{1}{n}\right)\left|\frac{x}{1+x}\right|^{n} \quad \text { for }-1<x<0 \tag{4}
\end{equation*}
$$

The upper bound for $\left|R_{n}(x)\right|$ is given by the inequality in equation (3) in the case $x>0$ and by the inequality in equation (4) in the case $-1<x<0$.
(b) (10 pts) Find all values of $x>-1$ for which it follows from your result in part (a) that $\lim _{n \rightarrow+\infty} R_{n}(x)=0$.
Solution: As a first step, note that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{r^{n}}{n}\right|=0 \quad \text { if and only if } \quad|r| \leq 1 \tag{5}
\end{equation*}
$$

To prove the result in equation (5) note that if $|r| \leq 1$, then $0 \leq|r|^{n} / n \leq 1 / n$ and the result follows from the squeeze lemma. If $|r|>1$, then L'Hospital's rule applies. $d\left(|r|^{n}\right) / d n=\ln |r| \cdot r^{n}$. Thus, it follows from L'Hospital's rule that $\lim _{n \rightarrow \infty}|r|^{n} / n=$ $+\infty$, and the proof of the result in equation (5) is complete.
From equations (3) and (5) it follows that for $x>0$, we have $\lim _{n \rightarrow \infty} R_{n}(x)=0$ if and only if $0<x \leq 1$.
From equations (4) and (5) it follows that for $-1<x<0$, we have $\lim _{n \rightarrow i n f t y} R_{n}(x)=$ 0 if and only if $|x /(1+x)| \leq 1$. Note that for $-1<x<0$ we have $|x|=-x$ and $1+x>0$. Thus

$$
\left|\frac{x}{1+x}\right|=\frac{-x}{1+x}
$$

so the condition that $|x /(1+x)| \leq 1$ is the same as

$$
\begin{aligned}
\frac{-x}{1+x} & \leq 1 \\
-x & \leq 1+x \\
0 & \leq 1+2 x \\
-1 & \leq 2 x \\
\frac{-1}{2} & \leq x
\end{aligned}
$$

Thus, the values of x for which it follows that from the result in part (a) that $\lim _{n \rightarrow \infty} R_{n}(x)=0$ is the closed interval $[-1 / 2,1]$.
6. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{2 \pi x}\right), & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) (10 pts) Is f continuous?

Solution: Answer: Yes. We will show that f is continuous at every $x_{0} \in \mathbb{R}$, that is,

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=x_{0} . \tag{6}
\end{equation*}
$$

If $x_{0} \neq 0$, then clearly $\lim _{x \rightarrow x_{0}} x=x_{0}$. Moreover, $\lim _{x \rightarrow x_{0}} \sin \left(\frac{1}{2 \pi x}\right)=\sin \left(\frac{1}{2 \pi x_{0}}\right)$, since both the sine function and the function $x \mapsto \frac{1}{2 \pi x}$ are continuous. Since products of continuous functions are continuous, (6) holds when $x_{0} \neq 0$.

It remains to show that (6) holds when $x_{0}=0$. First note the following. For all $x \neq 0$, we have

$$
|f(x)|=\left|x \sin \left(\frac{1}{2 \pi x}\right)\right|=|x|\left|\sin \left(\frac{1}{2 \pi x}\right)\right| \leq|x|
$$

Moreover, $|f(0)|=0 \leq 0$. Thus, $|f(x)| \leq|x|$ for all $x \in \mathbb{R}$. Therefore,

$$
0 \leq \lim _{x \rightarrow 0}|f(x)| \leq \lim _{x \rightarrow 0}|x|=0
$$

and so $\lim _{x \rightarrow 0}|f(x)|=0$ by the Squeeze Theorem for limits of sequences. This implies $\lim _{x \rightarrow 0} f(x)=0$, and this completes the proof of the claim.
(b) (10 pts) Is the restriction of f to the interval $[-1,1]$ uniformly continuous?

Solution: Since the map f is continuous for all $x \in \mathbb{R}$, it is also the case that f is continuous for all $-1 \leq x \leq 1$; that is, the restriction of f to the interval $[-1,1]$ is also continuous. Furthermore, note that the interval $[-1,1]$ is closed.
Now, every continuous function defined on a closed interval is uniformly continuous (Theorem 19.2 in the book). Therefore, restriction of f to the interval $[-1,1]$ uniformly continuous.
(c) (10 pts) Is f differentiable?

Solution: Answer: No. More precisely, the function f is differentiable at any point $x_{0} \neq 0$, since the sine function is differentiable, and the fact that differentiability is preserved under composition and multiplication. But f is not differentiable at $x_{0}=0$. Indeed, the Newton quotient at 0 is equal to

$$
\frac{f(x)-f(0)}{x-0}=\frac{x \sin \left(\frac{1}{2 \pi x}\right)}{x}=\sin \left(\frac{1}{2 \pi x}\right)
$$

and

$$
\lim _{x \rightarrow 0} \sin \left(\frac{1}{2 \pi x}\right)
$$

does not exist. To see why that is the case, take for instance the sequence $x_{n}=\frac{1}{4 \pi^{2} n}$, which converges to 0 . Then

$$
\lim _{n \rightarrow \infty} \sin \left(\frac{1}{2 \pi \frac{1}{4 \pi^{2} n}}\right)=\lim _{n \rightarrow \infty} \sin (2 \pi n)=\lim _{n \rightarrow \infty} 0=0
$$

On the other hand, if we take the sequence $x_{n}=\frac{1}{\pi^{2}(4 n+1)}$, which also converges to 0 , then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sin \left(\frac{1}{2 \pi \frac{1}{\pi^{2}(4 n+1)}}\right) & =\lim _{n \rightarrow \infty} \sin \left(\frac{\pi(4 n+1)}{2}\right) \\
& =\lim _{n \rightarrow \infty} \sin \left(2 n \pi+\frac{\pi}{2}\right) \\
& =\lim _{n \rightarrow \infty} 1=1
\end{aligned}
$$

This completes the proof that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{2 \pi x}\right)$ does not exist, and thus, that the function f is not differentiable at 0 .

