Prof. Alexandru Suciu
MATH 3175
Group Theory
Spring 2024

Solutions to Homework 6

1. Let G be a group acting on a set S, and let $\phi: G \rightarrow \operatorname{Sym}(S)$ be the homomorphism defined by $\phi(a)=\lambda_{a}$ for $a \in G$, where $\lambda_{a}: S \rightarrow S$ is the bijection given by $\lambda_{a}(x)=a * x$ for $x \in S$. For each $x \in S$, let $G_{x}=\{a \in G: a * x=x\}$ be the stabilizer subgroup of x. Show that the kernel of ϕ coincides with the intersection of all the stabilizer subgroups; that is,

$$
\operatorname{ker}(\phi)=\bigcap_{x \in S} G_{x}
$$

First note that

$$
\operatorname{ker}(\phi)=\left\{a \in G: \lambda_{a}=\operatorname{id}_{S}\right\}=\{a \in G: a * x=x, \forall x \in S\} .
$$

On the other hand,

$$
\bigcap_{x \in S} G_{x}=\bigcap_{x \in S}\{a \in G: a * x=x\}=\{a \in G: a * x=x, \forall x \in S\} .
$$

Thus, the two sets coincide.
2. Let G be a group, and let $H \leq G$ be a non-trivial subgroup. Consider the action of the group H on the set G given by left-multiplication; that is, $h * g=h g$ for $h \in H$ and $g \in G$.
(i) What are the orbits of this action?

For each $g \in G$, the (left) H-orbit of g is $H g=\{h g: h \in H\}$ - a right coset of H.
Thus, the orbits of this action are the right cosets of H.
(ii) What are the stabilizer subgroups of this action?

The stabilizer of an element $g \in G$ is the subgroup of H given by $H_{g}=\{h \in H: h g=$ $g\}$. Since $h g=g$ is equivalent to $h=e$, we conclude that $H_{g}=\{e\}$. Thus, all the stabilizer subgroups of this action are equal to the trivial subgroup.
(iii) What is the subset of G left fixed by this action?

The fixed subset of this action is $G^{H}=\{g \in G: h g=g, \forall h \in H\}$. Since by assumption H is not the trivial group, there must be an element $h \in H$ with $h \neq e$, and for this element, the equality $h g=g$ does not hold. Therefore, $G^{H}=\emptyset$; that is, the action has no fixed points.
3. Let $G=\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ be the (multiplicative) group of invertible 2×2 matrices with entries in \mathbb{Z}_{2}. Let $S=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, viewed as the set of 2×1 vectors with entries in \mathbb{Z}_{2}. Consider the action of G on S given by matrix multiplication on vectors; that is, if

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G \quad \text { and } \quad \vec{v}=\binom{v_{1}}{v_{2}} \in S,
$$

then

$$
A * \vec{v}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{v_{1}}{v_{2}}=\binom{a v_{1}+b v_{2}}{c v_{1}+d v_{2}} .
$$

(i) For each element $\vec{v} \in S$, determine the orbit $G \vec{v}$ and stabilizer $G_{\vec{v}}$.

First note that

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\}
$$

which is a group of order 6 (in fact, $G \cong S_{3}$).
If $\vec{v}=\binom{0}{0}$, then $G \vec{v}=\left\{\binom{0}{0}\right\}$ and $G_{\vec{v}}=G$.
If $\vec{v}=\binom{1}{0}$, then $G \vec{v}=\left\{\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\}$ and $G_{\vec{v}}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\}$.
If $\vec{v}=\binom{0}{1}$, then $G \vec{v}=\left\{\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\}$ and $G_{\vec{v}}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\right\}$.
If $\vec{v}=\binom{1}{1}$, then $G \vec{v}=\left\{\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\}$ and $G_{\vec{v}}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$.
Note that, in each case, the Orbit-Stabilizer Theorem is satisfied, that is, $|G \vec{v}|=$ $|G| /\left|G_{\vec{v}}\right|$. Indeed, in the first case, $1=6 / 6$, while in the other 3 cases, $3=6 / 2$.
(ii) Determine the set S^{G} (the subset of S fixed by G).
$S^{G}=\{\vec{v} \in S: A \vec{v}=\vec{v}, \forall A \in G\}=\left\{\binom{0}{0}\right\}$.
4. Let the symmetric group $G=S_{5}$ act on itself by conjugation. Consider the permutation $\sigma=(123)(45) \in S_{5}$.
(i) What is the size of the orbit of σ ?

The orbit of σ under the conjugation action is $S_{5} \cdot \sigma=\left\{g \sigma g^{-1}: g \in S_{5}\right\}$. This is the conjugacy class of σ in S_{5}, denoted by $\mathrm{Cl}(\sigma)$. Such a conjugacy class consists of all permutations of the set $\{1,2,3,4,5\}$ that have the same cycle decomposition as σ, that is, are of type $(\cdots)(\cdot)$. There are $\binom{5}{3} \cdot 2=20$ such permutations:

$$
\begin{aligned}
\mathrm{Cl}(\sigma)=\{ & (123)(45),(132)(45),(124)(35),(142)(35), \\
& (125)(34),(152)(34),(134)(25),(143)(25), \\
& (135)(24),(153)(24),(145)(23),(154)(23), \\
& (234)(15),(243)(15),(235)(14),(253)(14), \\
& (245)(13),(254)(13),(345)(12),(354)(12)\} .
\end{aligned}
$$

(ii) What are the orders of the elements in this orbit?

All elements in $\mathrm{Cl}(\sigma)$ have the same order as σ, namely, $\operatorname{lcm}(3,2)=3 \cdot 2=6$.
(iii) What is the size of the stabilizer of σ ?

By the Orbit-Stabilizer Theorem,

$$
\left|\left(S_{5}\right)_{\sigma}\right|=\frac{\left|S_{5}\right|}{\left|S_{5} \cdot \sigma\right|}=\frac{5!}{|\mathrm{Cl}(\sigma)|}=\frac{120}{20}=6 .
$$

5. Let G be a group acting on a set S.
(i) Suppose G has size 21 and S has size 8. Show that $S^{G} \neq \emptyset$.

Suppose $S^{G}=\emptyset$. By the Class Equation for the G-action on S, we have:

$$
|S|=\left|S^{G}\right|+\sum_{|G x|>1}\left[G: G_{x}\right]
$$

Since $|S|=8$ and $\left|S^{G}\right|=|\emptyset|=0$ by assumption, we get

$$
\sum_{|G x|>1}\left[G: G_{x}\right]=8 .
$$

On the other hand, from Lagrange's Theorem we know that the index $\left[G: G_{x}\right.$] divides $|G|=21$, and so $\left[G: G_{x}\right] \in\{1,3,7,21\}$. Since the above sume is equal to $8<21$, this rules out $\left[G: G_{x}\right]=21$. Moreover, by the Orbit-Stabilizer Theorem $\left[G: G_{x}\right]=$ $|G| /\left|G_{x}\right|=|G x|>1$, so this rules out $\left[G: G_{x}\right]=21$. We are left with only two possibilities: $\left[G: G_{x}\right] \in\{3,7\}$. Therefore, we need to solve the equation

$$
3 m+7 n=8
$$

for positive integers m, n. But clearly this equation has no such solution. Therefore, the assumption that $S^{G}=\emptyset$ has led to a contradiction. This shows that $S^{G} \neq \emptyset$.
(ii) Give an example where $|G|=8,|S|=8$, and $S^{G}=\emptyset$.

Let G be any group of order 8 (e.g., $G=\mathbb{Z}_{8}$, or D_{8}, or Q_{8}, etc), and let $S=G$, with G acting on itself by left-multiplication, that is, $g * x=g x$. Then $S^{G}=\{x \in G: g x=$ $x, \forall g \in G\}=\emptyset$.

