FINAL EXAM
MATH 3175 GROUP THEORY
SPRING 2024

(1) Suppose G = (g) is a cyclic group of order 30 generated by g.

(a) Let H be the subgroup generated by ¢g*'. How many elements does H have?
Solution. H = (g?') = (g®'39)) = (¢°). The element g* has order 30/3 = 10, so
H has order 10.

(b) How many subgroups does G have?
Solution. Subgroups are of the form (g%) where d divides 30. Since 30 = 2-3-5,
divisors are of the form 2°3°5¢ with a,b,c € {0,1}. So there are 2-2 -2 possibili-
ties for a, b, ¢ giving the divisors 1,2, 3,6, 5,10, 15,30. So there are 8 subgroups.

(c) How many elements does the automorphism group Aut(G) have?
Solution. Aut(G) is isomorphic to the multiplicative group

(2, ) = {1,7,11,13,17, 19,23, 29}.
This group has ¢(30) = ¢(2-3-5) = (2—1)(3 —1)(5 — 1) = 8 elements.
(2) Assume that G is a finite group acting on a finite set S.

(a) Suppose that |G| > |S|. Show that for every z € S, the stabilizer group G, is
nontrivial.
Solution. For x € S we have |G|/|G,| =[G : G.| = |G - z| < |S| < |G|, because
G-z C S. It follows that |G,| > 1, so G, is nontrivial.

(b) Suppose that G is a p-group and p does not divide |S|. Show that G, = G for
some x € S.
Solution. We have a theorem that states that |S| = |S¢| mod p when G is a
finite p-group acting on a finite set S. Since |S| is not divisible by p, neither is
|S¢|. In particular |S¢| is nonzero and there exists an element x € S¢. Then x
is a fixed point and G, = G.

(3) Let G be a group with center Z(G), and let H be a subgroup of G.

(a) Show that if H C Z(G), then H is normal in G.
Solution. Suppose g € G and h € H. Because h € H C Z(G), we have gh = hg
and ghg™' = hgg~' = h € H. This shows that ghg™' € H for all g € G and
h € H, which means that H is a normal subgroup of G.
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(b)

Show that if H C Z(G) and G/H is cyclic, then G is abelian.

Solution. Suppose that G/H is generated by the coset gH € G/H. Suppose
a € G. Then aH = (gH)* = g"H for some k € Z. Since a € g*H we can write
a = g*h for some h € H. Ifb is another element of G then it is of the form b = g‘u
for some ¢ € Z and u € H. Now ab = ¢*hg‘u = ¢*¢'hu = g*g*uh = g*ug*h = ba
because h and u lie in the center of G. So G is abelian.

(4) Let G be the group of 3 x 3 upper-diagonal matrices with entries in Zy and 1’s down
the diagonal:

(a)

(b)

1 a ¢
G= 010 a,b,c € Zo
0 01

Show that G is a non-abelian group of order 8.

Solution. G is a subset GLy(Zy). As a set, G = Z3 (thus, G has order 8), with
multiplication of matrices in GLg(Zsy) inducing the operation (a, b, c)-(a',V/, ') =
(a+d', b4V, c+ +ab'), with the output belonging to G. Since GLy(Z5) is a finite
group and G is a subset closed under multiplication, G is a subgroup of GLiy(Zs).
Clearly, (1,0,0) - (0,1,0) = (1,1, 1) is different from (0,1,0) - (1,0,0) = (1,1,0),
and so G is not abelian.

What is the center of G?

Solution. The only elements (a,b,c) € G that commute with all (a',b',c') € G
are those for which ab’ = a'b for all a’, V' € Z,. Taking o’ = 0,0 =1 gives a = 0;
taking o’ = 1,0 = 0 gives b = 0. Thus, Z(G) consists of all elements of the form
(0,0, ¢), that is, Z(G) = {(0,0,0), (0,0,1)} = Z,.

Up to isomorphism, there are only two non-abelian groups of order 8, namely,
the dihedral group D4 and the quaternion group ()g. Is the group G isomorphic
to D4 or to Qg7 Explain.

Solution. The group G is not isomorphic to (g, since the orders of their el-
ements don’t match. For instance, G has five elements of order 2 (namely,
(0,0,1),(1,0,0), (0,1,0), (1,0,1), and (0,1, 1)), whereas Qg = {£1, +i,+j + k}
has only one, namely, —1. Since we know that G is a non-abelian group of order
8, it follows that G must be isomorphic to Dy.

Alternatively, we can define an explicit isomorphism from G = ((1,1,1),(1,0,0))
to Dy = (a,b | a* = v* = 1,ba = a~'b) by sending (1,1,1) to a and (1,0,0)
to b; clearly, the relations among the two sets of generators match under this
correspondence.

(5) Let S = R\ {0,1}. Define the functions f and g from S to S by f(x) = 1/z and
g(x) = (x —1)/x.

(a)

Show that f and g are one-to-one and onto and find the inverse functions f~1

and g1

Solution. If x € S, then f(f(x)) = 1/(1/x) = x so the inverse function of f(x)

is f(z) itself. If y = (x — 1)/ for x € S, then yr = x — 1 and x = 1/(1 — y).

We have g(xz) =1—1/x. Let h(z) = 1/(1 — ). Then h is a function from S to
2



S and we have

and g(h(x)) =1— h(i)) =1—(1—2) ==z So h is the inverse function of g.

(b) Show that the subgroup of Sym(S) generated by f and ¢ is isomorphic to the
symmetric group Ss.
Solution. Let e = idg be the identity function of S, that is, the identity of
Sym(S). Note that f* = e and g* # e, yet g> = e; moreover, fgf = g?. Thus,
G={f 9 ={e f 9,6% fg, fg*}. We can define a homomorphism ¢: G — S3
by ¢(f) = (12) and ¢(g) = (123); clearly, ¢ respects the relations in both groups,
and so it is well-defined. Moreover, it is a bijection, and hence an isomorphism.
Therefore, the group G = (f, g) is isomorphic to Ss.

(6) Suppose that G is a group of order n and H is a group of order m. (A group homo-
morphism ¢: G — H is trivial if ¢(g) = e for all g € G.)

(a) Suppose that (m,n) = 1. Show that every group homomorphism ¢: G — H
must be trivial. (Hint: Consider the order of ¢(g) for g € G.)

Solution. Suppose g € G. The order of ¢(g) € H divides |H| = m. Since g € G,
and n = |G| we have g" = e and ¢(g)" = ¢(¢9") = ¢(e) = e. So the order of ¢(g)

divides n. Now the order of ¢(g) also divides (m,n) = 1 so the order is 1 and

P(g) =e.

(b) Suppose that G is cyclic and (m,n) # 1. Prove that there exists a nontrivial

group homomorphism ¢: G — H. (Hint: There exists a prime p that divides m
and n.)
Solution. Let p a common prime factor of m and n. By Cauchy’s theorem H has
an element h of order p because p is a prime that divides |H|. Suppose G = (g).
Then we can define a group homomorphism ¢: G — H by ¢(g*) = h*. This is
well-defined because the order of h divides the order of g.

(7) Let G be a group of order 5-7-11 = 385.

(a) Show that G has a normal subgroup of order 7.
Solution. Let k, be the number of Sylow p-subgroups of GG. Then k; divides
511 = 55. This means that k; € {1,5,11,55}. We also have k; = 1 mod 7. So
k7 has to be 1. This means that the 7-Sylow subgroup, which has 7 elements, is
normal.

(b) Suppose that G does not have a normal subgroup of order 5. How many sub-
groups of order 5 does G have? How many elements of order 5 does G have?
Solution. Since ks divides 77 = 7 - 11 we have ks € {1,7,11,77}. Because

ks = 1 mod 5 we have ks = 1 or ks = 11. Since we assume there is no normal
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subgroup with 5 elements, we get ks = 11. So there are 11 subgroups with 5 ele-
ments. Fach of these subgroups has 4 elements of order 5, so there are 11-4 = 44
elements of order 5.

(8) Let 0 = (153 2)(26 3 7) € Ss.

(a) Write o as a product of disjoint cycles.
Solution. 0 = (153 7)(2 6)

(b) Write o as a product of transpositions. Is o an even or odd permutation?
Solution. o = (1 5)(5 3)(3 7)(2 6). But there are many other ways, such as
o=BT7)(57)(17)(26).

(c) What is 07
Solution, 0 = (153 7)°(26)°=(1537)>=(13)(57).

(9) The symmetric group G = S, acts on the set X = {1,2,3,4} x {1,2,3,4} by
o-(i,7) = (c(i),0(j)) for every (i,j) € X and o € S,.

(a) Describe the orbits of G in X.
Solution, one orbit G-(1,1) = {(1,1),(2,2),(3,3), (4,4)} and another orbit is G -

(1,2) = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2), (3,4), (4, 1), (4,2), (4,3) }.

(b) What is the stabilizer group G 9 of (1,2) € X?
Solution. o - (1,2) = (0(1),0(2)) is equal to (1,2) if and only if o(1) = 1 and
0(2) = 2. The stabilizer is equal to G(19 = {1,(3 4)} C S,.

(10) Suppose that (G,-) is a group, and consider the subgroup N = {(g,9) | g € G} of
G x G.

(a) Show that N is a normal subgroup of G x G if and only if G is abelian.
Solution. If G is abelian, tnen G' X GG is abelian and every subgroup, in particular
also N, is normal. Conversely, suppose that N is normal. Suppose g,h € G.
Then (h,h) € N and (g,e) € G x G. So (g,e)(h,h)(g,e)™* = (ghg™*,h) € N.
This implies ghg™' = h and gh = hg. This proves that G is abelian.

(b) Suppose that G is abelian. Show that (G x G)/N is isomorphic to G.
Solution. Define a function homomorphism ¢: G x G — G by ¢(g1,92) =
9195 ". Then ¢ is a group homomorphism: ¢((g1,g2)(h1, h2)) = ¢(gihi, gohs) =
gihi(g2ho) ™t = gihihs g3 = 9195 ' byt = ¢(g1, 92)d(h1, ho). Since ¢(g,e) = g
we see that (G x G) = G. An element (g1, ge) lies in the kernel of ¢ when
9195 " = e. This proves that the kernel of ¢ is exactly N. By the fundamental
homomorphism theorem, G x G/N = G x G/ ker(¢) = ¢(G x G) = G.



