FINAL EXAM MATH 3175 GROUP THEORY SPRING 2024

(1) Suppose $G=\langle g\rangle$ is a cyclic group of order 30 generated by g.
(a) Let H be the subgroup generated by g^{21}. How many elements does H have? Solution. $H=\left\langle g^{21}\right\rangle=\left\langle g^{(21,30)}\right\rangle=\left\langle g^{3}\right\rangle$. The element g^{3} has order $30 / 3=10$, so H has order 10.
(b) How many subgroups does G have?

Solution. Subgroups are of the form $\left\langle g^{d}\right\rangle$ where d divides 30 . Since $30=2 \cdot 3 \cdot 5$, divisors are of the form $2^{a} 3^{b} 5^{c}$ with $a, b, c \in\{0,1\}$. So there are $2 \cdot 2 \cdot 2$ possibilities for a, b, c giving the divisors $1,2,3,6,5,10,15,30$. So there are 8 subgroups.
(c) How many elements does the automorphism group $\operatorname{Aut}(G)$ have?

Solution. $\operatorname{Aut}(G)$ is isomorphic to the multiplicative group

$$
\left(\mathbb{Z}_{30}^{\times}, \cdot\right)=\{1,7,11,13,17,19,23,29\} .
$$

This group has $\phi(30)=\phi(2 \cdot 3 \cdot 5)=(2-1)(3-1)(5-1)=8$ elements.
(2) Assume that G is a finite group acting on a finite set S.
(a) Suppose that $|G|>|S|$. Show that for every $x \in S$, the stabilizer group G_{x} is nontrivial.
Solution. For $x \in S$ we have $|G| /\left|G_{x}\right|=\left[G: G_{x}\right]=|G \cdot x| \leq|S|<|G|$, because $G \cdot x \subseteq S$. It follows that $\left|G_{x}\right|>1$, so G_{x} is nontrivial.
(b) Suppose that G is a p-group and p does not divide $|S|$. Show that $G_{x}=G$ for some $x \in S$.
Solution. We have a theorem that states that $|S| \equiv\left|S^{G}\right| \bmod p$ when G is a finite p-group acting on a finite set S. Since $|S|$ is not divisible by p, neither is $\left|S^{G}\right|$. In particular $\left|S^{G}\right|$ is nonzero and there exists an element $x \in S^{G}$. Then x is a fixed point and $G_{x}=G$.
(3) Let G be a group with center $Z(G)$, and let H be a subgroup of G.
(a) Show that if $H \subseteq Z(G)$, then H is normal in G.

Solution. Suppose $g \in G$ and $h \in H$. Because $h \in H \subseteq Z(G)$, we have $g h=h g$ and $g h g^{-1}=h g g^{-1}=h \in H$. This shows that $g h g^{-1} \in H$ for all $g \in G$ and $h \in H$, which means that H is a normal subgroup of G.
(b) Show that if $H \subseteq Z(G)$ and G / H is cyclic, then G is abelian.

Solution. Suppose that G / H is generated by the coset $g H \in G / H$. Suppose $a \in G$. Then $a H=(g H)^{k}=g^{k} H$ for some $k \in \mathbb{Z}$. Since $a \in g^{k} H$ we can write $a=g^{k} h$ for some $h \in H$. If b is another element of G then it is of the form $b=g^{\ell} u$ for some $\ell \in \mathbb{Z}$ and $u \in H$. Now $a b=g^{k} h g^{\ell} u=g^{k} g^{\ell} h u=g^{\ell} g^{k} u h=g^{\ell} u g^{k} h=b a$ because h and u lie in the center of G. So G is abelian.
(4) Let G be the group of 3×3 upper-diagonal matrices with entries in \mathbb{Z}_{2} and 1 's down the diagonal:

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{2}\right\} .
$$

(a) Show that G is a non-abelian group of order 8 .

Solution. G is a subset $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$. As a set, $G=\mathbb{Z}_{2}^{3}$ (thus, G has order 8), with multiplication of matrices in $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ inducing the operation $(a, b, c) \cdot\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=$ $\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a b^{\prime}\right)$, with the output belonging to G. Since $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ is a finite group and G is a subset closed under multiplication, G is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$. Clearly, $(1,0,0) \cdot(0,1,0)=(1,1,1)$ is different from $(0,1,0) \cdot(1,0,0)=(1,1,0)$, and so G is not abelian.
(b) What is the center of G ?

Solution. The only elements $(a, b, c) \in G$ that commute with all $\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in G$ are those for which $a b^{\prime}=a^{\prime} b$ for all $a^{\prime}, b^{\prime} \in \mathbb{Z}_{2}$. Taking $a^{\prime}=0, b^{\prime}=1$ gives $a=0$; taking $a^{\prime}=1, b^{\prime}=0$ gives $b=0$. Thus, $Z(G)$ consists of all elements of the form $(0,0, c)$, that is, $Z(G)=\{(0,0,0),(0,0,1)\} \cong \mathbb{Z}_{2}$.
(c) Up to isomorphism, there are only two non-abelian groups of order 8, namely, the dihedral group D_{4} and the quaternion group Q_{8}. Is the group G isomorphic to D_{4} or to Q_{8} ? Explain.
Solution. The group G is not isomorphic to Q_{8}, since the orders of their elements don't match. For instance, G has five elements of order 2 (namely, $(0,0,1),(1,0,0),(0,1,0),(1,0,1)$, and $(0,1,1))$, whereas $Q_{8}=\{ \pm 1, \pm i, \pm j \pm k\}$ has only one, namely, -1 . Since we know that G is a non-abelian group of order 8 , it follows that G must be isomorphic to D_{4}.
Alternatively, we can define an explicit isomorphism from $G=\langle(1,1,1),(1,0,0)\rangle$ to $D_{4}=\left\langle a, b \mid a^{4}=b^{2}=1, b a=a^{-1} b\right\rangle$ by sending $(1,1,1)$ to a and $(1,0,0)$ to b; clearly, the relations among the two sets of generators match under this correspondence.
(5) Let $S=\mathbb{R} \backslash\{0,1\}$. Define the functions f and g from S to S by $f(x)=1 / x$ and $g(x)=(x-1) / x$.
(a) Show that f and g are one-to-one and onto and find the inverse functions f^{-1} and g^{-1}.
Solution. If $x \in S$, then $f(f(x))=1 /(1 / x)=x$ so the inverse function of $f(x)$ is $f(x)$ itself. If $y=(x-1) / x$ for $x \in S$, then $y x=x-1$ and $x=1 /(1-y)$. We have $g(x)=1-1 / x$. Let $h(x)=1 /(1-x)$. Then h is a function from S to
S and we have

$$
h(g(x))=\frac{1}{1-\frac{x-1}{x}}=\frac{1}{\frac{1}{x}}=x
$$

and $g(h(x))=1-\frac{1}{h(x))}=1-(1-x)=x$. So h is the inverse function of g.
(b) Show that the subgroup of $\operatorname{Sym}(S)$ generated by f and g is isomorphic to the symmetric group S_{3}.
Solution. Let $e=\mathrm{id}_{S}$ be the identity function of S, that is, the identity of $\operatorname{Sym}(S)$. Note that $f^{2}=e$ and $g^{2} \neq e$, yet $g^{3}=e$; moreover, $f g f=g^{2}$. Thus, $G=\langle f, g\rangle=\left\{e, f, g, g^{2}, f g, f g^{2}\right\}$. We can define a homomorphism $\phi: G \rightarrow S_{3}$ by $\phi(f)=(12)$ and $\phi(g)=(123)$; clearly, ϕ respects the relations in both groups, and so it is well-defined. Moreover, it is a bijection, and hence an isomorphism. Therefore, the group $G=\langle f, g\rangle$ is isomorphic to S_{3}.
(6) Suppose that G is a group of order n and H is a group of order m. (A group homomorphism $\phi: G \rightarrow H$ is trivial if $\phi(g)=e$ for all $g \in G$.)
(a) Suppose that $(m, n)=1$. Show that every group homomorphism $\phi: G \rightarrow H$ must be trivial. (Hint: Consider the order of $\phi(g)$ for $g \in G$.)

Solution. Suppose $g \in G$. The order of $\phi(g) \in H$ divides $|H|=m$. Since $g \in G$, and $n=|G|$ we have $g^{n}=e$ and $\phi(g)^{n}=\phi\left(g^{n}\right)=\phi(e)=e$. So the order of $\phi(g)$ divides n. Now the order of $\phi(g)$ also divides $(m, n)=1$ so the order is 1 and $\phi(g)=e$.
(b) Suppose that G is cyclic and $(m, n) \neq 1$. Prove that there exists a nontrivial group homomorphism $\phi: G \rightarrow H$. (Hint: There exists a prime p that divides m and n.)
Solution. Let p a common prime factor of m and n. By Cauchy's theorem H has an element h of order p because p is a prime that divides $|H|$. Suppose $G=\langle g\rangle$. Then we can define a group homomorphism $\phi: G \rightarrow H$ by $\phi\left(g^{k}\right)=h^{k}$. This is well-defined because the order of h divides the order of g.
(7) Let G be a group of order $5 \cdot 7 \cdot 11=385$.
(a) Show that G has a normal subgroup of order 7 .

Solution. Let k_{p} be the number of Sylow p-subgroups of G. Then k_{7} divides $5 \cdot 11=55$. This means that $k_{7} \in\{1,5,11,55\}$. We also have $k_{7} \equiv 1 \bmod 7$. So k_{7} has to be 1. This means that the 7 -Sylow subgroup, which has 7 elements, is normal.
(b) Suppose that G does not have a normal subgroup of order 5 . How many subgroups of order 5 does G have? How many elements of order 5 does G have? Solution. Since k_{5} divides $77=7 \cdot 11$ we have $k_{5} \in\{1,7,11,77\}$. Because $k_{5} \equiv 1 \bmod 5$ we have $k_{5}=1$ or $k_{5}=11$. Since we assume there is no normal
subgroup with 5 elements, we get $k_{5}=11$. So there are 11 subgroups with 5 elements. Each of these subgroups has 4 elements of order 5 , so there are $11 \cdot 4=44$ elements of order 5 .
(8) Let $\sigma=\left(\begin{array}{ll}15 & 3\end{array}\right)(2637) \in S_{8}$.
(a) Write σ as a product of disjoint cycles.

Solution. $\sigma=(1537)(26)$
(b) Write σ as a product of transpositions. Is σ an even or odd permutation? Solution. $\sigma=\binom{1}{5}\binom{5}{3}(37)(26)$. But there are many other ways, such as $\sigma=(37)(57)(17)(26)$.
(c) What is σ^{50} ? Solution, $\sigma^{50}=\left(\begin{array}{llll}1 & 5 & 3 & 7\end{array}\right)^{50}\left(\begin{array}{l}2\end{array}\right)^{50}=\left(\begin{array}{llll}1 & 5 & 3 & 7\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}5 & 7\end{array}\right)$.
(9) The symmetric group $G=S_{4}$ acts on the set $X=\{1,2,3,4\} \times\{1,2,3,4\}$ by $\sigma \cdot(i, j)=(\sigma(i), \sigma(j))$ for every $(i, j) \in X$ and $\sigma \in S_{4}$.
(a) Describe the orbits of G in X.

Solution, one orbit $G \cdot(1,1)=\{(1,1),(2,2),(3,3),(4,4)\}$ and another orbit is G. $(1,2)=\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$.
(b) What is the stabilizer group $G_{(1,2)}$ of $(1,2) \in X$?

Solution. $\sigma \cdot(1,2)=(\sigma(1), \sigma(2))$ is equal to $(1,2)$ if and only if $\sigma(1)=1$ and $\sigma(2)=2$. The stabilizer is equal to $G_{(1,2)}=\{1,(34)\} \subseteq S_{4}$.
(10) Suppose that (G, \cdot) is a group, and consider the $\operatorname{subgroup} N=\{(g, g) \mid g \in G\}$ of $G \times G$.
(a) Show that N is a normal subgroup of $G \times G$ if and only if G is abelian.

Solution. If G is abelian, tnen $G \times G$ is abelian and every subgroup, in particular also N, is normal. Conversely, suppose that N is normal. Suppose $g, h \in G$. Then $(h, h) \in N$ and $(g, e) \in G \times G$. So $(g, e)(h, h)(g, e)^{-1}=\left(g h g^{-1}, h\right) \in N$. This implies $g h g^{-1}=h$ and $g h=h g$. This proves that G is abelian.
(b) Suppose that G is abelian. Show that $(G \times G) / N$ is isomorphic to G. Solution. Define a function homomorphism $\phi: G \times G \rightarrow G$ by $\phi\left(g_{1}, g_{2}\right)=$ $g_{1} g_{2}^{-1}$. Then ϕ is a group homomorphism: $\phi\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right)=\phi\left(g_{1} h_{1}, g_{2} h_{2}\right)=$ $g_{1} h_{1}\left(g_{2} h_{2}\right)^{-1}=g_{1} h_{1} h_{2}^{-1} g_{2}^{-1}=g_{1} g_{2}^{-1} h_{1} h_{2}^{-1}=\phi\left(g_{1}, g_{2}\right) \phi\left(h_{1}, h_{2}\right)$. Since $\phi(g, e)=g$ we see that $\phi(G \times G)=G$. An element $\left(g_{1}, g_{2}\right)$ lies in the kernel of ϕ when $g_{1} g_{2}^{-1}=e$. This proves that the kernel of ϕ is exactly N. By the fundamental homomorphism theorem, $G \times G / N=G \times G / \operatorname{ker}(\phi) \cong \phi(G \times G)=G$.

