
FINAL EXAM
MATH 3175 GROUP THEORY

SPRING 2024

(1) Suppose G = ⟨g⟩ is a cyclic group of order 30 generated by g.

(a) Let H be the subgroup generated by g21. How many elements does H have?
Solution. H = ⟨g21⟩ = ⟨g(21,30)⟩ = ⟨g3⟩. The element g3 has order 30/3 = 10, so
H has order 10.

(b) How many subgroups does G have?
Solution. Subgroups are of the form ⟨gd⟩ where d divides 30. Since 30 = 2 · 3 · 5,
divisors are of the form 2a3b5c with a, b, c ∈ {0, 1}. So there are 2 · 2 · 2 possibili-
ties for a, b, c giving the divisors 1, 2, 3, 6, 5, 10, 15, 30. So there are 8 subgroups.

(c) How many elements does the automorphism group Aut(G) have?
Solution. Aut(G) is isomorphic to the multiplicative group

(Z×
30, ·) = {1, 7, 11, 13, 17, 19, 23, 29}.

This group has ϕ(30) = ϕ(2 · 3 · 5) = (2− 1)(3− 1)(5− 1) = 8 elements.

(2) Assume that G is a finite group acting on a finite set S.

(a) Suppose that |G| > |S|. Show that for every x ∈ S, the stabilizer group Gx is
nontrivial.
Solution. For x ∈ S we have |G|/|Gx| = [G : Gx] = |G · x| ≤ |S| < |G|, because
G · x ⊆ S. It follows that |Gx| > 1, so Gx is nontrivial.

(b) Suppose that G is a p-group and p does not divide |S|. Show that Gx = G for
some x ∈ S.
Solution. We have a theorem that states that |S| ≡ |SG| mod p when G is a
finite p-group acting on a finite set S. Since |S| is not divisible by p, neither is
|SG|. In particular |SG| is nonzero and there exists an element x ∈ SG. Then x
is a fixed point and Gx = G.

(3) Let G be a group with center Z(G), and let H be a subgroup of G.

(a) Show that if H ⊆ Z(G), then H is normal in G.
Solution. Suppose g ∈ G and h ∈ H. Because h ∈ H ⊆ Z(G), we have gh = hg
and ghg−1 = hgg−1 = h ∈ H. This shows that ghg−1 ∈ H for all g ∈ G and
h ∈ H, which means that H is a normal subgroup of G.
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(b) Show that if H ⊆ Z(G) and G/H is cyclic, then G is abelian.
Solution. Suppose that G/H is generated by the coset gH ∈ G/H. Suppose
a ∈ G. Then aH = (gH)k = gkH for some k ∈ Z. Since a ∈ gkH we can write
a = gkh for some h ∈ H. If b is another element ofG then it is of the form b = gℓu
for some ℓ ∈ Z and u ∈ H. Now ab = gkhgℓu = gkgℓhu = gℓgkuh = gℓugkh = ba
because h and u lie in the center of G. So G is abelian.

(4) Let G be the group of 3× 3 upper-diagonal matrices with entries in Z2 and 1’s down
the diagonal:

G =


1 a c
0 1 b
0 0 1

 ∣∣∣∣ a, b, c ∈ Z2

 .

(a) Show that G is a non-abelian group of order 8.
Solution. G is a subset GL2(Z2). As a set, G = Z3

2 (thus, G has order 8), with
multiplication of matrices in GL2(Z2) inducing the operation (a, b, c)·(a′, b′, c′) =
(a+a′, b+b′, c+c′+ab′), with the output belonging to G. Since GL2(Z2) is a finite
group and G is a subset closed under multiplication, G is a subgroup of GL2(Z2).
Clearly, (1, 0, 0) · (0, 1, 0) = (1, 1, 1) is different from (0, 1, 0) · (1, 0, 0) = (1, 1, 0),
and so G is not abelian.

(b) What is the center of G?
Solution. The only elements (a, b, c) ∈ G that commute with all (a′, b′, c′) ∈ G
are those for which ab′ = a′b for all a′, b′ ∈ Z2. Taking a′ = 0, b′ = 1 gives a = 0;
taking a′ = 1, b′ = 0 gives b = 0. Thus, Z(G) consists of all elements of the form
(0, 0, c), that is, Z(G) = {(0, 0, 0), (0, 0, 1)} ∼= Z2.

(c) Up to isomorphism, there are only two non-abelian groups of order 8, namely,
the dihedral group D4 and the quaternion group Q8. Is the group G isomorphic
to D4 or to Q8? Explain.
Solution. The group G is not isomorphic to Q8, since the orders of their el-
ements don’t match. For instance, G has five elements of order 2 (namely,
(0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 0, 1), and (0, 1, 1)), whereas Q8 = {±1,±i,±j ± k}
has only one, namely, −1. Since we know that G is a non-abelian group of order
8, it follows that G must be isomorphic to D4.
Alternatively, we can define an explicit isomorphism from G = ⟨(1, 1, 1), (1, 0, 0)⟩
to D4 = ⟨a, b | a4 = b2 = 1, ba = a−1b⟩ by sending (1, 1, 1) to a and (1, 0, 0)
to b; clearly, the relations among the two sets of generators match under this
correspondence.

(5) Let S = R \ {0, 1}. Define the functions f and g from S to S by f(x) = 1/x and
g(x) = (x− 1)/x.

(a) Show that f and g are one-to-one and onto and find the inverse functions f−1

and g−1.
Solution. If x ∈ S, then f(f(x)) = 1/(1/x) = x so the inverse function of f(x)
is f(x) itself. If y = (x − 1)/x for x ∈ S, then yx = x − 1 and x = 1/(1 − y).
We have g(x) = 1− 1/x. Let h(x) = 1/(1− x). Then h is a function from S to
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S and we have

h(g(x)) =
1

1− x−1
x

=
1
1
x

= x

and g(h(x)) = 1− 1
h(x))

= 1− (1− x) = x. So h is the inverse function of g.

(b) Show that the subgroup of Sym(S) generated by f and g is isomorphic to the
symmetric group S3.
Solution. Let e = idS be the identity function of S, that is, the identity of
Sym(S). Note that f 2 = e and g2 ̸= e, yet g3 = e; moreover, fgf = g2. Thus,
G = ⟨f, g⟩ = {e, f, g, g2, fg, fg2}. We can define a homomorphism ϕ : G → S3

by ϕ(f) = (12) and ϕ(g) = (123); clearly, ϕ respects the relations in both groups,
and so it is well-defined. Moreover, it is a bijection, and hence an isomorphism.
Therefore, the group G = ⟨f, g⟩ is isomorphic to S3.

(6) Suppose that G is a group of order n and H is a group of order m. (A group homo-
morphism ϕ : G → H is trivial if ϕ(g) = e for all g ∈ G.)

(a) Suppose that (m,n) = 1. Show that every group homomorphism ϕ : G → H
must be trivial. (Hint: Consider the order of ϕ(g) for g ∈ G.)

Solution. Suppose g ∈ G. The order of ϕ(g) ∈ H divides |H| = m. Since g ∈ G,
and n = |G| we have gn = e and ϕ(g)n = ϕ(gn) = ϕ(e) = e. So the order of ϕ(g)
divides n. Now the order of ϕ(g) also divides (m,n) = 1 so the order is 1 and
ϕ(g) = e.

(b) Suppose that G is cyclic and (m,n) ̸= 1. Prove that there exists a nontrivial
group homomorphism ϕ : G → H. (Hint: There exists a prime p that divides m
and n.)
Solution. Let p a common prime factor of m and n. By Cauchy’s theorem H has
an element h of order p because p is a prime that divides |H|. Suppose G = ⟨g⟩.
Then we can define a group homomorphism ϕ : G → H by ϕ(gk) = hk. This is
well-defined because the order of h divides the order of g.

(7) Let G be a group of order 5 · 7 · 11 = 385.

(a) Show that G has a normal subgroup of order 7.
Solution. Let kp be the number of Sylow p-subgroups of G. Then k7 divides
5 · 11 = 55. This means that k7 ∈ {1, 5, 11, 55}. We also have k7 ≡ 1 mod 7. So
k7 has to be 1. This means that the 7-Sylow subgroup, which has 7 elements, is
normal.

(b) Suppose that G does not have a normal subgroup of order 5. How many sub-
groups of order 5 does G have? How many elements of order 5 does G have?
Solution. Since k5 divides 77 = 7 · 11 we have k5 ∈ {1, 7, 11, 77}. Because
k5 ≡ 1 mod 5 we have k5 = 1 or k5 = 11. Since we assume there is no normal
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subgroup with 5 elements, we get k5 = 11. So there are 11 subgroups with 5 ele-
ments. Each of these subgroups has 4 elements of order 5, so there are 11 ·4 = 44
elements of order 5.

(8) Let σ = (1 5 3 2)(2 6 3 7) ∈ S8.

(a) Write σ as a product of disjoint cycles.
Solution. σ = (1 5 3 7)(2 6)

(b) Write σ as a product of transpositions. Is σ an even or odd permutation?
Solution. σ = (1 5)(5 3)(3 7)(2 6). But there are many other ways, such as
σ = (3 7)(5 7)(1 7)(2 6).

(c) What is σ50?
Solution, σ50 = (1 5 3 7)50(2 6)50 = (1 5 3 7)2 = (1 3)(5 7).

(9) The symmetric group G = S4 acts on the set X = {1, 2, 3, 4} × {1, 2, 3, 4} by
σ · (i, j) = (σ(i), σ(j)) for every (i, j) ∈ X and σ ∈ S4.

(a) Describe the orbits of G in X.
Solution, one orbit G ·(1, 1) = {(1, 1), (2, 2), (3, 3), (4, 4)} and another orbit is G ·
(1, 2) = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}.

(b) What is the stabilizer group G(1,2) of (1, 2) ∈ X?
Solution. σ · (1, 2) = (σ(1), σ(2)) is equal to (1, 2) if and only if σ(1) = 1 and
σ(2) = 2. The stabilizer is equal to G(1,2) = {1, (3 4)} ⊆ S4.

(10) Suppose that (G, ·) is a group, and consider the subgroup N = {(g, g) | g ∈ G} of
G×G.

(a) Show that N is a normal subgroup of G×G if and only if G is abelian.
Solution. If G is abelian, tnen G×G is abelian and every subgroup, in particular
also N , is normal. Conversely, suppose that N is normal. Suppose g, h ∈ G.
Then (h, h) ∈ N and (g, e) ∈ G × G. So (g, e)(h, h)(g, e)−1 = (ghg−1, h) ∈ N .
This implies ghg−1 = h and gh = hg. This proves that G is abelian.

(b) Suppose that G is abelian. Show that (G×G)/N is isomorphic to G.
Solution. Define a function homomorphism ϕ : G × G → G by ϕ(g1, g2) =
g1g

−1
2 . Then ϕ is a group homomorphism: ϕ((g1, g2)(h1, h2)) = ϕ(g1h1, g2h2) =

g1h1(g2h2)
−1 = g1h1h

−1
2 g−1

2 = g1g
−1
2 h1h

−1
2 = ϕ(g1, g2)ϕ(h1, h2). Since ϕ(g, e) = g

we see that ϕ(G × G) = G. An element (g1, g2) lies in the kernel of ϕ when
g1g

−1
2 = e. This proves that the kernel of ϕ is exactly N . By the fundamental

homomorphism theorem, G×G/N = G×G/ ker(ϕ) ∼= ϕ(G×G) = G.
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