1	2	3	4	5	6	7	8	9	10	total

FINAL EXAM (120 MIN) MATH 3175 GROUP THEORY SPRING 2024

Instructions: One calculator is allowed but no other electronics. One letter-size, single sided crib sheet is allowed, but no other notes. Each of the 10 problems is worth 10 points.
(1) Suppose $G=\langle g\rangle$ is a cyclic group of order 30 generated by g.
(a) Let H be the subgroup generated by g^{21}. How many elements does H have?
(b) How many subgroups does G have?
(c) How many elements does the automorphism group $\operatorname{Aut}(G)$ have?
(2) Assume that G is a finite group acting on a finite set S.
(a) Suppose that $|G|>|S|$. Show that for every $x \in S$, the stabilizer group G_{x} is nontrivial.
(b) Suppose that G is a p-group and p does not divide $|S|$. Show that $G_{x}=G$ for some $x \in S$.
(3) Let G be a group with center $Z(G)$, and let H be a subgroup of G.
(a) Show that if $H \subseteq Z(G)$, then H is normal in G.
(b) Show that if $H \subseteq Z(G)$ and G / H is cyclic, then G is abelian.
(4) Let G be the group of 3×3 upper-diagonal matrices with entries in \mathbb{Z}_{2} and 1 's down the diagonal:

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{2}\right\} .
$$

(a) Show that G is a non-abelian group of order 8 .
(b) What is the center of G ?
(c) Up to isomorphism, there are only two non-abelian groups of order 8, namely, the dihedral group D_{4} and the quaternion group Q_{8}. Is the group G isomorphic to D_{4} or to Q_{8} ? Explain.
(5) Let $S=\mathbb{R} \backslash\{0,1\}$. Define the functions f and g from S to S by $f(x)=1 / x$ and $g(x)=(x-1) / x$.
(a) Show that f and g are one-to-one and onto and find the inverse functions f^{-1} and g^{-1}.
(b) Show that the subgroup of $\operatorname{Sym}(S)$ generated by f and g is isomorphic to the symmetric group S_{3}.
(6) Suppose that G is a group of order n and H is a group of order m. (A group homomorphism $\phi: G \rightarrow H$ is trivial if $\phi(g)=e$ for all $g \in G$.)
(a) Suppose that $(m, n)=1$. Show that every group homomorphism $\phi: G \rightarrow H$ must be trivial. (Hint: Consider the order of $\phi(g)$ for $g \in G$.)
(b) Suppose that G is cyclic and $(m, n) \neq 1$. Prove that there exists a nontrivial group homomorphism $\phi: G \rightarrow H$. (Hint: There exists a prime p that divides m and n.)
(7) Let G be a group of order $5 \cdot 7 \cdot 11=385$.
(a) Show that G has a normal subgroup of order 7 .
(b) Suppose that G does not have a normal subgroup of order 5. How many subgroups of order 5 does G have? How many elements of order 5 does G have?
(8) Let $\sigma=\left(\begin{array}{lll}1 & 5 & 2\end{array}\right)\left(\begin{array}{ll}2 & 6 \\ 3\end{array}\right) \in S_{8}$.
(a) Write σ as a product of disjoint cycles.
(b) Write σ as a product of transpositions. Is σ an even or odd permutation?
(c) What is σ^{50} ?
(9) The symmetric group $G=S_{4}$ acts on the set $X=\{1,2,3,4\} \times\{1,2,3,4\}$ by $\sigma \cdot(i, j)=(\sigma(i), \sigma(j))$ for every $(i, j) \in X$ and $\sigma \in S_{4}$.
(a) Describe the orbits of G in X.
(b) What is the stabilizer group $G_{(1,2)}$ of $(1,2) \in X$?
(10) Suppose that (G, \cdot) is a group, and consider the subgroup $N=\{(g, g) \mid g \in G\}$ of $G \times G$.
(a) Show that N is a normal subgroup of $G \times G$ if and only if G is abelian.
(b) Suppose that G is abelian. Show that $(G \times G) / N$ is isomorphic to G.

