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NORTHEASTERN UNIVERSITY
DEPARTMENT OF MATHEMATICS

MATH 3150 Real Analysis Spring 2011
Final Exam

1. Let fi,..., fr be functions defined on a subset A C R” and taking vélues in R, Let
f= i:f" and set
- m; = inf{fi(z) | z € A}, m = inf{f(z) | z € A},
L

(a) Show that m > Zm,-.
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(b) Given an example where equality fails.
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2. Let A ¢ R™ and B C R” be two subsets, and consider their product, A x B, viewed
as a subset in R™ x R* = R™+",

- {a) Suppose A and B are path-connected. Show that A x B is path-connected.
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{(b) Suppose A and B are bounded. Show that A x B is bounded.
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3. Consider the following subset of the plane: 4

<<

A= {(z,y) e R? |22 + 4" = 1}.
Show that A is compact. ///M”’”¢
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4, Consider the function f: [0,1] - R given by

1
flz) = L, fez=1- = for some integer n > 1,
0 otherwise.

1
Show that f is Riemann-integrable, and that f flz)dz = 0.
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5. Consider the function f: [0,7] — R given by

2

fx) = f: cos (V't )dt
(a) What is f(0)?

® fo)={, e =o

(b) Show that f is differentiable. What is its derivative?
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Cind ]f"(%) = 4/(x*) - 2k = Cos (VB[ o ) " 2X

{(c) When x = /3, show that f'{(z) = . = oS ()‘( ) reX
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6. Let f: [0,+00) — R be a continuous function, differentiable on (0, co). Suppose that
' f@y+x- fllx)y >0, foralz>0.

Show that f{z} > 0, for all z > 0.
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7. Let f: R* 5 R and u, v, w: R — ]R be differentiable functions, and let F: R® — R
be the function given by F(z,y, z) = f(u(z, z), v(z, y), wly, 2)).

(a) Use the Chain Rule to express 0F/dz, 0F/0y, and 8F/0z in terms of the partial
derivatives of f, u, v, and w.

bx dx X
/f) ,Eﬁiw«%é d
(\4 o ox (s 9

(b} Now suppose

f@,y,2) =2~ a®y + 24 wlwy) =z -ty v(z,y) =2zy, wizy)=2"+".
Compute BF/ Oz, OF /0y, and OF/az, ei r er using pa.rt (a) or directly (01‘ both).
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8. Consider the surface .5 in R® given by the equation 2% 4+ yz — z2z = 4.

(a) Find a unit normal vector to S at the point (1,2, 3).
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{(b) Find the equation of the tangent plane to the surface S at the point (1,2, 3).
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