Name: Solutions

					!	1	1		
			l			1			
- 1			l	1	l				
			l	1		1			
			l	i .	l				
			Ι.	1 .				_	
	1 1	າ	12	14 .	15	16	7	× ×):
	1	-	19	j-x .	10	•	•		

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MATH 3150

Real Analysis

Spring 2011

Final Exam

1. Let f_1, \ldots, f_k be functions defined on a subset $A \subseteq \mathbb{R}^n$ and taking values in \mathbb{R} . Let $f = \sum_{i=1}^k f_i$, and set

$$m_i = \inf\{f_i(x) \mid x \in A\}, \qquad m = \inf\{f(x) \mid x \in A\},$$

(a) Show that $m \ge \sum_{i=1}^k m_i$.

$$f(x) \geq mi$$

$$f(x) = \sum_{i=1}^{n} f_i(x_i) \geq \sum_{i=1}^{n} m_i$$

$$m = \inf_{x \in A} \{f(x_i)\} \geq \sum_{i=1}^{n} m_i$$

(b) Given an example where equality fails.

$$f_{1},f_{2}: t_{0},1) \longrightarrow \mathbb{R}$$

$$f_{1}(x) = x \qquad \mathcal{A} \longrightarrow m_{1} = 0$$

$$f_{2}(x) = -x \qquad \longrightarrow m_{2} = -1$$

$$f = f_{1}+f_{2}=0 \qquad \longrightarrow m = 0$$

$$m_{1}+m_{2}=-1 < 0 = m$$

2. Let $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^n$ be two subsets, and consider their product, $A \times B$, viewed as a subset in $\mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$.

(a) Suppose A and B are path-connected. Show that $A \times B$ is path-connected.

Let
$$(a_1,b_1)$$
 & (a_1,b_1) be $A \times B$.

1 A path $-conn \Longrightarrow \partial$ path $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A}$

1 B path $-conn \Longrightarrow \partial$ path $\mathcal{N}_2: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{B}$

1 B path $-conn \Longrightarrow \partial$ path $\mathcal{N}_2: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{B}$

1 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{B}$

2 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{B}$

3 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{B}$

4 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{B}$

5 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{B}$

6 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{B}$

6 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{B}$

7 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{A} \times \mathcal{A}$

7 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{A} \times \mathcal{A}$

7 $\mathcal{N}_1: \mathcal{L}_2(\mathcal{N}) \longrightarrow \mathcal{A} \times \mathcal{A} \times \mathcal{A} \times \mathcal{A}$

7 $\mathcal{N}_1: \mathcal{A} \longrightarrow \mathcal{A} \times \mathcal$

(b) Suppose A and B are bounded. Show that $A \times B$ is bounded.

$$|A \mid bounded \Rightarrow A \subset B(0,r) \qquad for sme r>0$$

$$|B \mid bounded \Rightarrow B \subset B(0,s) \qquad for sme s>0$$

$$|A \times B \subset B(0,r) \times B(0,s)$$

$$|C \mid B(0,r) \times B(0,s)$$

$$|C \mid B(0,r) \times B(0,s)$$

3. Consider the following subset of the plane:

$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^4 = 1\}.$$

Show that A is compact.

· A closed: A = ff(y)where $f: \mathbb{R}^2 \to \mathbb{R}$ f(x,y) = x

Shot IN closed => A closed

Afternate sol:

HORMEN BESS ET.

HORMEN, M. E) CA

Ac open : A closed.

If after (X1>1 or (41>1, then (x,5) \$A

:. A C 1(91) × N(91) C D(0, 1/2)

Herne-Bovel 1 A 18 compact

4. Consider the function $f: [0,1] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 1, & \text{if } x = 1 - \frac{1}{n}, \text{ for some integer } n \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

Show that f is Riemann-integrable, and that $\int_0^1 f(x)dx = 0$.

fro = Safadex =0

So enough to final a sequence of partitions Pro

Such that

()(f, Ph) = 10000

Let Pu be the patilon of (91) oftended by substanding each reterral [1-istin] noto a squal arterials, for 1=1,..., a

FILL THE TELEVISION 1

Then $U(f, h_1) = \sum_{i=1}^{N} \frac{2}{n} \left(\left(\frac{1}{i+1} \right) - \left(\frac{1}{i+1} \right) \right) + \left(\frac{1}{i-1} \right) + \left(\frac{1}{i-1} \right)$ $= \frac{2}{n} \left(-\frac{1}{n+1} \right) + \frac{1}{n+1} = \frac{n-2}{n(n+1)}$ $= \frac{n}{n} \left(\frac{1}{n+1} \right) + \frac{1}{n+1} = \frac{n-2}{n(n+1)}$

5. Consider the function $f: [0, \pi] \to \mathbb{R}$ given by

$$f(x) = \int_0^{x^2} \cos\left(\sqrt{t}\,\right) dt$$

(a) What is f(0)?

$$(2) \qquad \int_0^\infty \cos(\sqrt{t}) dt = 0$$

(b) Show that f is differentiable. What is its derivative?

h(t) =
$$\cos \sqrt{t}$$
 is cont on $[0, \pi]$
. $g(x) = \int_0^x \cos(\sqrt{t}) dt$ is differentiable, by $= g'(x) = \cos(\sqrt{x})$
.: $f(x) = g(x^2)$ is differentiable, by Chain Rule and $f'(x) = g'(x^2) \cdot 2x = \cos(\sqrt{t}) \cdot 2x$
(c) When $x = \pi/3$, show that $f'(x) = x$. $= \cos(x) \cdot 2x$

$$f'(\sqrt[\pi]{3}) = \cos(\pi/3) \cdot 2 \cdot \sqrt[\pi]{3}$$

= $\frac{1}{2} \cdot 2 \cdot \sqrt[\pi]{3} = \sqrt[\pi]{3}$

6. Let $f:[0,+\infty)\to\mathbb{R}$ be a continuous function, differentiable on $(0,\infty)$. Suppose that $f(x) + x \cdot f'(x) \ge 0$, for all x > 0.

Show that $f(x) \geq 0$, for all $x \geq 0$.

$$\begin{aligned}
\mathfrak{Z}^{(n)} &= f(n) + \times f(x) \\
\mathfrak{Z}^{(n)} &= f(n) + \times f(x)
\end{aligned}$$

m all x>0

g increasing for all X>D

2 f2 The Quality Vall Do Und And

=> g(x) >0 for all x>0

Then also f(0) = line f(x) = 0 inve front

 $\therefore + (n) > 0$

, Hx30

- 7. Let $f: \mathbb{R}^3 \to \mathbb{R}$ and $u, v, w: \mathbb{R}^2 \to \mathbb{R}$ be differentiable functions, and let $F: \mathbb{R}^3 \to \mathbb{R}$ be the function given by F(x, y, z) = f(u(x, z), v(x, y), w(y, z)).
 - (a) Use the Chain Rule to express $\partial F/\partial x$, $\partial F/\partial y$, and $\partial F/\partial z$ in terms of the partial derivatives of f, u, v, and w.

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial v}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial w}{\partial x}$$

$$\frac{\partial F}{\partial y} = \frac{\partial f}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial w}{\partial y} + \frac{\partial f}{\partial x} \frac{\partial w}{\partial y}$$

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial w}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial w}{\partial y}$$

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial w}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial w}{\partial y}$$

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial w}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial w}{\partial y}$$

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial w}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial w}{\partial x}$$

(b) Now suppose

f(x, y, z) = $x^3 - x^2y^2 + z^4$, u(x, y) = x + y, v(x, y) = 2xy, $w(x, y) = x^2 + y^3$. Compute $\partial F/\partial x$, $\partial F/\partial y$, and $\partial F/\partial z$, either using part (a), or directly (or both).

 $F(x,y,t) = (x+t)^{3} - (x+t)^{2}(2xy)^{2} + (y^{2}+2^{3})^{4}$ $F(x,y,t) = (x+t)^{3} - (x+t)^{2}(2xy)^{2} + (y^{2}+2^{3})^{4}$ $\partial f_{0x} = 3(x+t)^{2} - 8(x+t)x^{2}y^{2} - 8xy^{2}(x+t)^{2}$ $\partial f_{0y} = -8 \times^{2}y (x+t)^{2} + 8y (y^{2}+t^{3})^{3}$ $\partial f_{0z} = 3(x+t)^{2} - 8x^{2}y^{2}(x+t) + 12t^{2}(y^{2}+t^{3})^{3}$

- 8. Consider the surface S in \mathbb{R}^3 given by the equation $x^2 + yz xz = 4$.
 - (a) Find a unit normal vector to S at the point (1, 2, 3).

 $\vec{u} = Pf(123) = (-1)^{3}$ $\vec{u} = Pf(123) = (-1)^{3}$

(b) Find the equation of the tangent plane to the surface S at the point (1, 2, 3).

MAAMAAB