\qquad

| 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MATH 3150
Real Analysis
Spring 2011

Final Exam

1. Let f_{1}, \ldots, f_{k} be functions defined on a subset $A \subseteq \mathbb{R}^{n}$ and taking values in \mathbb{R}. Let $f=\sum_{i=1}^{k} f_{i}$, and set

$$
m_{i}=\inf \left\{f_{i}(x) \mid x \in A\right\}, \quad m=\inf \{f(x) \mid x \in A\}
$$

(a) Show that $m \geq \sum_{i=1}^{k} m_{i}$.
(b) Given an example where equality fails.
2. Let $A \subset \mathbb{R}^{m}$ and $B \subset \mathbb{R}^{n}$ be two subsets, and consider their product, $A \times B$, viewed as a subset in $\mathbb{R}^{m} \times \mathbb{R}^{n}=\mathbb{R}^{m+n}$.
(a) Suppose A and B are path-connected. Show that $A \times B$ is path-connected.
(b) Suppose A and B are bounded. Show that $A \times B$ is bounded.
3. Consider the following subset of the plane:

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{4}=1\right\}
$$

Show that A is compact.
4. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}1, & \text { if } x=1-\frac{1}{n}, \text { for some integer } n \geq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Show that f is Riemann-integrable, and that $\int_{0}^{1} f(x) d x=0$.
5. Consider the function $f:[0, \pi] \rightarrow \mathbb{R}$ given by

$$
f(x)=\int_{0}^{x^{2}} \cos (\sqrt{t}) d t
$$

(a) What is $f(0)$?
(b) Show that f is differentiable. What is its derivative?
(c) When $x=\pi / 3$, show that $f^{\prime}(x)=x$.
6. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a continuous function, differentiable on $(0, \infty)$. Suppose that

$$
f(x)+x \cdot f^{\prime}(x) \geq 0, \quad \text { for all } x>0
$$

Show that $f(x) \geq 0$, for all $x \geq 0$.
7. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $u, v, w: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable functions, and let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the function given by $F(x, y, z)=f(u(x, z), v(x, y), w(y, z))$.
(a) Use the Chain Rule to express $\partial F / \partial x, \partial F / \partial y$, and $\partial F / \partial z$ in terms of the partial derivatives of f, u, v, and w.
(b) Now suppose
$f(x, y, z)=x^{3}-x^{2} y^{2}+z^{4}, \quad u(x, y)=x+y, \quad v(x, y)=2 x y, \quad w(x, y)=x^{2}+y^{3}$.
Compute $\partial F / \partial x, \partial F / \partial y$, and $\partial F / \partial z$, either using part (a), or directly (or both).
8. Consider the surface S in \mathbb{R}^{3} given by the equation $x^{2}+y z-x z=4$.
(a) Find a unit normal vector to S at the point $(1,2,3)$.
(b) Find the equation of the tangent plane to the surface S at the point $(1,2,3)$.

