
Professor Alex Suciu

MATH 3150 Real Analysis Fall 2016

Solutions for the Midterm Exam

Instructions: Write your name in the space provided. Calculators are permitted, but books,

notes, or laptops are not allowed. Each problem is worth 12 points.

1. Complete the definitions in (a), (b) and (d). Prove (c).

(a) A sequence {xn}∞n=1 in R converges to x ∈ R if:

For every ε > 0, there is an N ∈ N such that |xn − x| < ε, for all n ≥ N .

(b) A sequence {xn}∞n=1 in R is a Cauchy sequence if:

For every ε > 0, there is an N ∈ N such that |xm − xn| < ε, for all m,n ≥ N .

(c) In R, show that if {xn}∞n=1 converges to x ∈ R, then it is a Cauchy sequence.

Let ε > 0. Since the sequence {xn}∞n=1 converges to x, there exists an N ∈ N
such that |xn − x| < ε/2, for all n ≥ N . By the triangle inequality,

|xm − xn| ≤ |xm − x|+ |xn − x| < ε/2 + ε/2 = ε,

for all m,n ≥ N . Thus, {xn}∞n=1 is a Cauchy sequence.

(d) A metric space (X, ρ) is complete if:

Every Cauchy sequence in X converges to some point x ∈ X.
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2. Define a sequence {xn}∞n=1 in R recursively by setting x0 = 0 and xn =
x2n−1 + 2

3
for

n ≥ 1.

(a) Show by induction that xn is monotonically increasing.

Starting at n = 0, we see that x0 = 0 ≤ 2/3 = x1. For the induction step,
assume 0 ≤ xn−1 ≤ xn. Then x2n−1 ≤ x2n, and so

0 ≤ xn =
x2n−1 + 2

3
≤ x2n + 2

3
= xn+1.

This completes the induction.

(b) Show by induction that xn is bounded above by 1.

Starting at n = 0, we see that x0 = 0 ≤ 1. For the induction step, assume
xn−1 ≤ 1. Then

xn =
x2n−1 + 2

3
≤ 1 + 2

3
= 1.

This completes the induction.

(c) Prove that xn converges and compute lim
n→∞

xn.

By parts (a) and (b), the sequence {xn} is monotonically increasing and bounded
above (by 1). Therefore, {xn} converges. Denote the limit of this sequence by x.

Taking the limit as n → ∞ on both sides of the recursion formula xn =
x2n−1+2

3
,

we obtain that x = x2+2
3

, or, x2 − 3x + 2 = 0. This equation has two solutions,
x = 1 and x = 2, but only the first one is valid, since xn ≤ 1 implies lim

n→∞
xn ≤ 1.

Hence,
lim
n→∞

xn = 1.
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3. Let A be the subset of R given by A = ([0, 1]\Q) ∪ (1, 2) ∪ {3}.

(a) Find the interior A◦ of A and the closure of the interior A◦ in R.

A◦ = (1, 2)

A◦ = [1, 2]

(b) Find the closure A of A and the interior of the closure (A)◦ in R.

A = [0, 2] ∪ {3}
(A)◦ = (0, 2)

(c) Find the boundary of A.

∂A = A \ A◦

=
(

[0, 2] ∪ {3}
)
\ (1, 2)

= [0, 1] ∪ {2, 3}

(d) Find the closure of the complement Ac of A in R.

Ac = (−∞, 0) ∪ ([0, 1] ∩Q) ∪ [2, 3) ∪ (3,∞)

Ac = (−∞, 1] ∪ [2,∞)
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4. (a) Does the series
∞∑
n=0

n10

10n
converge or not? Indicate a reason, or which test is used

and how.

Use the Ratio Test:

an+1

an
=

(n+1)10

10n+1

n10

10n

=
(n+ 1)10

n10
· 10n

10n+1

=
1

10
·
(

1 +
1

n

)10

−−−→
n→∞

1

10
· (1 + 0)10

=
1

10
< 1.

Hence, the series converges.

(b) Does the series
∞∑
n=1

1

(2n− 1)(2n+ 1)
converge? If yes, compute the series; if

not, indicate a reason.

Using partial fractions, we see that

1

(2n− 1)(2n+ 1)
=

1

2

(
1

2n− 1
− 1

2n+ 1

)
.

This allows us to compute explicitly the partial sums of this telescoping series:

sk =
k∑

n=1

1

(2n− 1)(2n+ 1)

=
k∑

n=1

1

2

(
1

2n− 1
− 1

2n+ 1

)
=

1

2

(
1− 1

3
+

1

3
− 1

5
+ · · ·+ 1

2k − 1
− 1

2k + 1

)
=

1

2

(
1− 1

2k + 1

)
Hence, lim

k→∞
sk = 1

2
, and the series converges. The sum of the series, then, is the

limit of the partial sums,
∞∑
n=1

1

(2n− 1)(2n+ 1)
=

1

2
.
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5. Let {xn}∞n=1 be a sequence in a complete metric space (X, ρ).

(a) Suppose that ρ(xn+1, xn) ≤ αρ(xn, xn−1) for all n ≥ 2, where 0 < α < 1. Show
that {xn} converges.

Since the metric space X is complete, it suffices to show that {xn} is a Cauchy
sequence. To start with let us note that, for all n ≥ 1,

ρ(xn+1, xn) ≤ αn−1ρ(x2, x1),

This claim is proved by induction on n. For n = 1, the claim simply says
ρ(x2, x1) ≤ α0ρ(x2, x1), which is obviously true, since α0 = 1. Assuming the
claim holds for n, let us verify it holds for n+ 1:

ρ(xn+2, x1) ≤ αρ(xn+1, xn) ≤ ααn−1ρ(x2, x1) = αnρ(x2, x1),

and so the induction step is verified.

Now, for every m > n, the triangle inequality, the above formula, and the fact
that 0 < α < 1 imply that

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xm−2) + · · ·+ ρ(xn+1, xn)

≤ αm−2ρ(x2, x1) + αm−3ρ(x2, x1) + · · ·+ αn−1ρ(x2, x1)

= αn−1ρ(x2, x1)
(
αm−n−1 + αm−n−2 + · · ·+ α + 1

)
≤ αn−1ρ(x2, x1)

∞∑
k=0

αk

= αn−1ρ(x2, x1)
1

1− α
But lim

n→∞
αn−1 = 0, and thus lim

n→∞
αn−1ρ(x2, x1)

1
1−α = 0, too. Therefore, for every

ε > 0, there is an N ∈ N such that ρ(xm, xn) < ε for all m > n ≥ N , thereby
showing that {xn} is a Cauchy sequence, and thus, a convergent sequence.

(b) Suppose instead that ρ(xn+1, xn) ≤ 1√
n

for all n ≥ 1. Show by means of an

example that {xn} may not converge.

Let X = R with the usual metric ρ(x, y) = |x− y|, and let xn =
n−1∑
k=1

1√
k

. Then

ρ(xn+1, xn) = |xn+1 − xn| =
1√
n

for all n ≥ 1, as required. On the other hand, xn is the (n− 1)-th partial sum of∑∞
k=1

1√
k
, which is a p-series with p = 1

2
, and thus a divergent series. Hence, the

sequence {xn} does not converge.
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6. In a metric space (X, ρ), let A 6= ∅ be a subset of X.

(a) Define the concept “an element x ∈ X is a limit point of A”.

We say that x is a limit point of A if every neighborhood U of x contains some
element of A different from x. In other words

(U \ {x}) ∩ A 6= ∅,
or, equivalently, there is a y ∈ U ∩ A such that y 6= x.

Note: The neighborhood U can be replaced by an arbitrary open ball Br(x).

(b) Define the concepts “a subset U ⊂ X is open in X” and “a subset F ⊂ X is
closed in X”.

A subset U ⊂ X is open in X if for every x ∈ X, there is an r > 0 such that
Br(x) ⊂ U .

A subset F ⊂ X is closed in X if its complement F c is open in X.

(c) Let A′ denote the set of limit points of A in X. Show that A′ is closed in X.

If A′ is empty, then obviously A′ is closed. So let us assume A′ 6= ∅. We need to
show

A′ ⊆ A′.

Let x ∈ A′, and let U be an (open) neighborhood of x. Then, since x is in the
closure of A′,

U ∩ A′ 6= ∅.
Let y ∈ U ∩ A′. There are two cases to consider:

(1) If y = x, then x ∈ A′ and we are done.

(2) If y 6= x, then U \ {x} is a neighborhood of y, since recall every singleton
in a metric space is a closed subset, and thus U \ {x} = (X \ {x}) ∩ U is
open. Hence,

(U \ {x, y}) ∩ A 6= ∅,
since y belongs to A′. But this implies

(U \ {x}) ∩ A 6= ∅,
and since U was an arbitrary neighborhood of x, we conclude that x ∈ A′.


