MATH 3150

Professor Alex Suciu Real Analysis

Solutions for the Midterm Exam

Instructions: Write your name in the space provided. Calculators are permitted, but books, notes, or laptops are **not** allowed. Each problem is worth 12 points.

- **1.** Complete the definitions in (a), (b) and (d). Prove (c).
 - (a) A sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} converges to $x \in \mathbb{R}$ if:

For every $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $|x_n - x| < \varepsilon$, for all $n \ge N$.

(b) A sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} is a Cauchy sequence if:

For every $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$, for all $m, n \ge N$.

(c) In \mathbb{R} , show that if $\{x_n\}_{n=1}^{\infty}$ converges to $x \in \mathbb{R}$, then it is a Cauchy sequence.

Let $\varepsilon > 0$. Since the sequence $\{x_n\}_{n=1}^{\infty}$ converges to x, there exists an $N \in \mathbb{N}$ such that $|x_n - x| < \varepsilon/2$, for all $n \ge N$. By the triangle inequality,

$$|x_m - x_n| \le |x_m - x| + |x_n - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

for all $m, n \ge N$. Thus, $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

(d) A metric space (X, ρ) is complete if:

Every Cauchy sequence in X converges to some point $x \in X$.

- **2.** Define a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} recursively by setting $x_0 = 0$ and $x_n = \frac{x_{n-1}^2 + 2}{3}$ for $n \ge 1$.
 - (a) Show by induction that x_n is monotonically increasing.

Starting at n = 0, we see that $x_0 = 0 \le 2/3 = x_1$. For the induction step, assume $0 \le x_{n-1} \le x_n$. Then $x_{n-1}^2 \le x_n^2$, and so

$$0 \le x_n = \frac{x_{n-1}^2 + 2}{3} \le \frac{x_n^2 + 2}{3} = x_{n+1}.$$

This completes the induction.

(b) Show by induction that x_n is bounded above by 1.

Starting at n = 0, we see that $x_0 = 0 \le 1$. For the induction step, assume $x_{n-1} \le 1$. Then

$$x_n = \frac{x_{n-1}^2 + 2}{3} \le \frac{1+2}{3} = 1.$$

This completes the induction.

(c) Prove that x_n converges and compute $\lim_{n \to \infty} x_n$.

By parts (a) and (b), the sequence $\{x_n\}$ is monotonically increasing and bounded above (by 1). Therefore, $\{x_n\}$ converges. Denote the limit of this sequence by x. Taking the limit as $n \to \infty$ on both sides of the recursion formula $x_n = \frac{x_{n-1}^2+2}{3}$, we obtain that $x = \frac{x^2+2}{3}$, or, $x^2 - 3x + 2 = 0$. This equation has two solutions, x = 1 and x = 2, but only the first one is valid, since $x_n \leq 1$ implies $\lim_{n \to \infty} x_n \leq 1$. Hence,

$$\lim_{n \to \infty} x_n = 1.$$

3. Let A be the subset of R given by A = ([0,1]\Q) ∪ (1,2) ∪ {3}.
(a) Find the interior A° of A and the closure of the interior A° in R.

$$A^{\circ} = (1, 2)$$
$$\overline{A^{\circ}} = [1, 2]$$

(b) Find the closure \overline{A} of A and the interior of the closure $(\overline{A})^{\circ}$ in \mathbb{R} .

$$\overline{A} = [0, 2] \cup \{3\}$$
$$(\overline{A})^{\circ} = (0, 2)$$

(c) Find the boundary of A.

$$\partial A = A \setminus A^{\circ}$$
$$= \left([0, 2] \cup \{3\} \right) \setminus (1, 2)$$
$$= [0, 1] \cup \{2, 3\}$$

(d) Find the closure of the complement $\overline{A^c}$ of A in \mathbb{R} .

$$A^{c} = (-\infty, 0) \cup ([0, 1] \cap \mathbb{Q}) \cup [2, 3) \cup (3, \infty)$$
$$\overline{A^{c}} = (-\infty, 1] \cup [2, \infty)$$

4. (a) Does the series $\sum_{n=0}^{\infty} \frac{n^{10}}{10^n}$ converge or not? Indicate a reason, or which test is used and how.

Use the Ratio Test:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^{10}}{10^{n+1}}}{\frac{n^{10}}{10^n}}$$
$$= \frac{(n+1)^{10}}{n^{10}} \cdot \frac{10^n}{10^{n+1}}$$
$$= \frac{1}{10} \cdot \left(1 + \frac{1}{n}\right)^{10}$$
$$\xrightarrow[n \to \infty]{} \frac{1}{10} \cdot (1+0)^{10}$$
$$= \frac{1}{10} < 1.$$

Hence, the series converges.

(b) Does the series $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ converge? If yes, **compute** the series; if not, indicate a reason.

Using partial fractions, we see that

$$\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right).$$

This allows us to compute explicitly the partial sums of this telescoping series:

$$s_{k} = \sum_{n=1}^{k} \frac{1}{(2n-1)(2n+1)}$$
$$= \sum_{n=1}^{k} \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$
$$= \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2k-1} - \frac{1}{2k+1} \right)$$
$$= \frac{1}{2} \left(1 - \frac{1}{2k+1} \right)$$

Hence, $\lim_{k\to\infty} s_k = \frac{1}{2}$, and the series converges. The sum of the series, then, is the limit of the partial sums,

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}.$$

- 5. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in a complete metric space (X, ρ) .
 - (a) Suppose that $\rho(x_{n+1}, x_n) \leq \alpha \rho(x_n, x_{n-1})$ for all $n \geq 2$, where $0 < \alpha < 1$. Show that $\{x_n\}$ converges.

Since the metric space X is complete, it suffices to show that $\{x_n\}$ is a Cauchy sequence. To start with let us note that, for all $n \ge 1$,

$$\rho(x_{n+1}, x_n) \le \alpha^{n-1} \rho(x_2, x_1),$$

This claim is proved by induction on n. For n = 1, the claim simply says $\rho(x_2, x_1) \leq \alpha^0 \rho(x_2, x_1)$, which is obviously true, since $\alpha^0 = 1$. Assuming the claim holds for n, let us verify it holds for n + 1:

$$\rho(x_{n+2}, x_1) \le \alpha \rho(x_{n+1}, x_n) \le \alpha \alpha^{n-1} \rho(x_2, x_1) = \alpha^n \rho(x_2, x_1),$$

and so the induction step is verified.

Now, for every m > n, the triangle inequality, the above formula, and the fact that $0 < \alpha < 1$ imply that

$$\rho(x_m, x_n) \leq \rho(x_m, x_{m-1}) + \rho(x_{m-1}, x_{m-2}) + \dots + \rho(x_{n+1}, x_n)$$

$$\leq \alpha^{m-2} \rho(x_2, x_1) + \alpha^{m-3} \rho(x_2, x_1) + \dots + \alpha^{n-1} \rho(x_2, x_1)$$

$$= \alpha^{n-1} \rho(x_2, x_1) \left(\alpha^{m-n-1} + \alpha^{m-n-2} + \dots + \alpha + 1 \right)$$

$$\leq \alpha^{n-1} \rho(x_2, x_1) \sum_{k=0}^{\infty} \alpha^k$$

$$= \alpha^{n-1} \rho(x_2, x_1) \frac{1}{1-\alpha}$$

But $\lim_{n\to\infty} \alpha^{n-1} = 0$, and thus $\lim_{n\to\infty} \alpha^{n-1} \rho(x_2, x_1) \frac{1}{1-\alpha} = 0$, too. Therefore, for every $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $\rho(x_m, x_n) < \varepsilon$ for all $m > n \ge N$, thereby showing that $\{x_n\}$ is a Cauchy sequence, and thus, a convergent sequence.

(b) Suppose instead that $\rho(x_{n+1}, x_n) \leq \frac{1}{\sqrt{n}}$ for all $n \geq 1$. Show by means of an example that $\{x_n\}$ may **not** converge.

Let $X = \mathbb{R}$ with the usual metric $\rho(x, y) = |x - y|$, and let $x_n = \sum_{k=1}^{n-1} \frac{1}{\sqrt{k}}$. Then $\rho(x_{n+1}, x_n) = |x_{n+1} - x_n| = \frac{1}{\sqrt{n}}$

for all $n \ge 1$, as required. On the other hand, x_n is the (n-1)-th partial sum of $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$, which is a *p*-series with $p = \frac{1}{2}$, and thus a divergent series. Hence, the sequence $\{x_n\}$ does not converge.

- **6.** In a metric space (X, ρ) , let $A \neq \emptyset$ be a subset of X.
 - (a) Define the concept "an element $x \in X$ is a limit point of A".

We say that x is a limit point of A if every neighborhood U of x contains some element of A different from x. In other words

 $(U \setminus \{x\}) \cap A \neq \emptyset,$

or, equivalently, there is a $y \in U \cap A$ such that $y \neq x$. Note: The neighborhood U can be replaced by an arbitrary open ball $B_r(x)$.

(b) Define the concepts "a subset $U \subset X$ is open in X" and "a subset $F \subset X$ is closed in X".

A subset $U \subset X$ is open in X if for every $x \in X$, there is an r > 0 such that $B_r(x) \subset U$. A subset $F \subset X$ is closed in X if its complement F^c is open in X.

(c) Let A' denote the set of limit points of A in X. Show that A' is closed in X.

If A' is empty, then obviously A' is closed. So let us assume $A' \neq \emptyset$. We need to show

 $\overline{A'} \subseteq A'.$

Let $x \in \overline{A'}$, and let U be an (open) neighborhood of x. Then, since x is in the closure of A',

 $U \cap A' \neq \emptyset.$

Let $y \in U \cap A'$. There are two cases to consider:

- (1) If y = x, then $x \in A'$ and we are done.
- (2) If $y \neq x$, then $U \setminus \{x\}$ is a neighborhood of y, since recall every singleton in a metric space is a closed subset, and thus $U \setminus \{x\} = (X \setminus \{x\}) \cap U$ is open. Hence,

 $(U \setminus \{x, y\}) \cap A \neq \emptyset,$

since y belongs to A'. But this implies

$$(U \setminus \{x\}) \cap A \neq \emptyset,$$

and since U was an arbitrary neighborhood of x, we conclude that $x \in A'$.