Name: \qquad

MATH 3150

Professor Alex Suciu
 Real Analysis
 Midterm Exam

Fall 2016

Instructions: Write your name in the space provided. Calculators are permitted, but books, notes, or laptops are not allowed. Each problem is worth 12 points.

1. Complete the definitions in (a), (b) and (d). Prove (c).
(a) A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} converges to $x \in \mathbb{R}$ if:
(b) A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} is a Cauchy sequence if:
(c) In \mathbb{R}, show that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to $x \in \mathbb{R}$ then it is a Cauchy sequence.
(d) A metric space (X, ρ) is complete if:
2. Define a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{R} recursively by setting $x_{0}=0$ and $x_{n}=\frac{x_{n-1}^{2}+2}{3}$ for $n \geq 1$.
(a) Show by induction that x_{n} is monotonically increasing.
(b) Show by induction that x_{n} is bounded above by 1 .
(c) Prove that x_{n} converges and compute $\lim _{n \rightarrow \infty} x_{n}$.
3. Let A be the subset of \mathbb{R} given by $A=([0,1] \backslash \mathbb{Q}) \cup(1,2) \cup\{3\}$.
(a) Find the interior A° of A and the closure of the interior $\overline{A^{\circ}}$ in \mathbb{R}.
(b) Find the closure \bar{A} of A and the interior of the closure $(\bar{A})^{\circ}$ in \mathbb{R}.
(c) Find the boundary of A.
(d) Find the closure of the complement $\overline{A^{c}}$ of A in \mathbb{R}.
4. (a) Does the series $\sum_{n=0}^{\infty} \frac{n^{10}}{10^{n}}$ converge or not? Indicate a reason, or which test is used and how.
(b) Does the series $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)}$ converge? If yes, compute the series; if not, indicate a reason.
5. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in a complete metric space (X, ρ).
(a) Suppose that $\rho\left(x_{n+1}, x_{n}\right) \leq \alpha \rho\left(x_{n}, x_{n-1}\right)$ for all $n \geq 2$, where $0<\alpha<1$. Show that $\left\{x_{n}\right\}$ converges.
(b) Suppose instead that $\rho\left(x_{n+1}, x_{n}\right) \leq \frac{1}{\sqrt{n}}$ for all $n \geq 1$. Show by means of an example that $\left\{x_{n}\right\}$ may not converge.
6. In a metric space (X, ρ), let $A \neq \emptyset$ be a subset of X.
(a) Define the concept "an element $x \in X$ is a limit point of A ".
(b) Define the concepts "a subset $U \subset X$ is open in X " and "a subset $F \subset X$ is closed in $X^{\prime \prime}$.
(c) Let A^{\prime} denote the set of limit points of A in X. Show that A^{\prime} is closed in X.
