Name:

Professor Alex Suciu Real Analysis

Fall 2016

Midterm Exam

Instructions: Write your name in the space provided. Calculators are permitted, but books, notes, or laptops are **not** allowed. Each problem is worth 12 points.

1. Complete the definitions in (a), (b) and (d). Prove (c).

MATH 3150

(a) A sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} converges to $x \in \mathbb{R}$ if:

(b) A sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} is a Cauchy sequence if:

(c) In \mathbb{R} , show that if $\{x_n\}_{n=1}^{\infty}$ converges to $x \in \mathbb{R}$ then it is a Cauchy sequence.

(d) A metric space (X, ρ) is complete if:

- **2.** Define a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} recursively by setting $x_0 = 0$ and $x_n = \frac{x_{n-1}^2 + 2}{3}$ for $n \ge 1$.
 - (a) Show by induction that x_n is monotonically increasing.

(b) Show by induction that x_n is bounded above by 1.

(c) Prove that x_n converges and compute $\lim_{n \to \infty} x_n$.

- **3.** Let A be the subset of \mathbb{R} given by $A = ([0,1] \setminus \mathbb{Q}) \cup (1,2) \cup \{3\}.$
 - (a) Find the interior A° of A and the closure of the interior $\overline{A^{\circ}}$ in \mathbb{R} .

(b) Find the closure \overline{A} of A and the interior of the closure $(\overline{A})^{\circ}$ in \mathbb{R} .

(c) Find the boundary of A.

(d) Find the closure of the complement $\overline{A^c}$ of A in \mathbb{R} .

4. (a) Does the series $\sum_{n=0}^{\infty} \frac{n^{10}}{10^n}$ converge or not? Indicate a reason, or which test is used and how.

(b) Does the series $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ converge? If yes, **compute** the series; if not, indicate a reason.

- **5.** Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in a complete metric space (X, ρ) .
 - (a) Suppose that $\rho(x_{n+1}, x_n) \leq \alpha \rho(x_n, x_{n-1})$ for all $n \geq 2$, where $0 < \alpha < 1$. Show that $\{x_n\}$ converges.

(b) Suppose instead that $\rho(x_{n+1}, x_n) \leq \frac{1}{\sqrt{n}}$ for all $n \geq 1$. Show by means of an example that $\{x_n\}$ may **not** converge.

- **6.** In a metric space (X, ρ) , let $A \neq \emptyset$ be a subset of X.
 - (a) Define the concept "an element $x \in X$ is a limit point of A".

(b) Define the concepts "a subset $U \subset X$ is open in X" and "a subset $F \subset X$ is closed in X".

(c) Let A' denote the set of limit points of A in X. Show that A' is closed in X.