
MATH 3150 Problem Set 1 Fall 2022

1. Given a number xn with xn ≥ −40 set xn+1 =
√

xn + 40.
(a) (10 pts) Show by mathematical induction that if x1 = −39, then xn+1 > xn for all integers

n ≥ 1.
Solution: Assume x1 = −39 and let P(n) be the statement that xn+1 > xn. The proof that
P(n) is true for all n ≥ 1 is by induction. The base case is n = 1.
Given that x1 = −39, we have that x2 =

√
x1 + 40 =

√
−39 + 40 =

√
1 = 1 so x1 < x2, and

hence, P(1) is true.
For the inductve step assume P(n) is true. Then we have

xn+1 > xn

xn+1 + 40 > xn + 40√
xn+1 + 40 >

√
xn + 40

x(n+1)+1 > x(n+1)

From the last line, it follows that P(n + 1) is true and the proof that xn+1 > xn for all n ≥ 1
is complete.

(b) (10 pts) Show by mathematical induction that if x1 = 24, then xn+1 < xn for all integers
n ≥ 1.
Solution: Assume x1 = 24 and let Q(n) be the statement that xn+1 < xn. The proof that
Q(n) is true for all n ≥ 1 is by induction. The base case is n = 1.
Given that x1 = 24, we have that x2 =

√
x1 + 40 =

√
24 + 40 =

√
64 = 8 so x2 < x1, and

hence, Q(1) is true.
For the inductve step assume Q(n) is true. Then we have

xn+1 < xn

xn+1 + 40 < xn + 40√
xn+1 + 40 <

√
xn + 40

x(n+1)+1 < x(n+1)

From the last line, it follows that Q(n + 1) is true and the proof that xn+1 < xn for all n ≥ 1
is complete.

2. (15 pts) Show by induction that

(I(n))
1
2
·

3
4
·

5
6
· · ·

2n − 1
2n

≤
1

√
3n + 1

.

Solution: For n = 1, we have that I(1) is the inequality

(I(1))
1
2
≤

1
√

3(1) + 1
=

1
2
.
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In this case, both the inequality and the equality hold.
To procceed by induction, assume that the inequality I(n) is true for n ∈ N. We want to show

that the inequality

(I(n + 1))
1
2
·

3
4
·

5
6
· · · · ·

2n + 1
2n + 2

≤
1

√
3n + 4

.

is true. Using the inequality I(n), this is to prove

1
2
·

3
4
·

5
6
· · · · ·

2n − 1
2n

·
2n + 1
2n + 2

≤
1

√
3n + 1

·
2n + 1
2n + 2

≤
1

√
3n + 4

.

So we want to show
2n + 1
2n + 2

≤

√
3n + 1
√

3n + 4
.

By taking a square of both sides and then simplifying it is equivalent to show

(1) (3n + 4)(4n2 + 4n + 1) ≤ (3n + 1)(4n2 + 8n + 4).

The left hand side of the inequality (1) simplifies to

(3n + 4)(4n2 + 4n + 1) = 12n3 + 12n2 + 3n + 16n2 + 16n + 4

= 12n3 + 28n2 + 19n + 4

and the right hand side of the inequality (1) simplifies to

(3n + 1)(4n2 + 8n + 4) = 12n3 + 24n2 + 12n + 4n2 + 8n + 4

= 12n3 + 28n2 + 20n + 4

Thus, the inequality in equation (1) is equivalent to the inequality

(2) 19n ≤ 20n.

Since the inequality in equation (2) is true for all n ≥ 1, the proof by induction that the inequal-
ity in equation I(n) holds for all n ≥ 1 is complete.

Also, since 19n < 20n for all n ≥ 1, equality in I(n) is not obtained for n > 1. Therefore, the
equality is obtained if and only if n = 1.

3. (10 pts) Determine whether (2 +
√

3)2/3 is a rational number, and explain your reasoning.
Solution: First approach. The first step is to see that

√
3 is not rational as follows. a =

√
3 is

a solution to the equation a2−3 = 0. By the Rational Zeros Theorem the only possible rational
solutions are ±1,±3. Since none of these values is a solution to a2 − 3 = 0, it follows that
a2 − 3 = 0 does not have any rational solutions, and hence,

√
3 is not rational.

We can now show that (2 +
√

3)2/3 is not rational as follows. Suppose a = (2 +
√

3)2/3 is
rational, then

a3 = (2 +
√

3)2 = 4 + 4
√

3 + 3 = 7 + 4
√

3

is rational, and hence (a3 − 7)/4 =
√

3 is rational. Thus the assumption that a = (2 +
√

3)2/3

is rational implies that
√

3 is rational. This is a contradiction, so the assumption must be false,
and it follows that a = (2 +

√
3)2/3 is not rational.
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Second approach. If a = (2 +
√

3)2/3 is rational, then

a3 = (2 +
√

3)2 = 4 + 4
√

3 + 3 so

a3 − 7 = 4
√

3 hence

(a3 − 7)2 = 16(3) and we have

a6 − 14a3 + 49 = 48

a6 − 14a3 + 1 = 0

Thus, a = (2 +
√

3)2/3 is a solution to p(a) = a6 − 14a3 + 1 = 0. By the Rational Zeros Theo-
rem the only possible rational solutions are ±1. Since neither of these is a solution to p(a) = 0,
it follows that p(a) = 0 has no rational solutions, and hence (2+

√
3)2/3 is not a rational number.

4. (10 pts) Use the Rational Zeros Theorem to find all rational solutions, if any, to the equation

(3) p(x) = 3x4 − 4x3 − x2 − 4x − 4 = 0.

Explain your reasoning.
Solution: By the Rational Zeros Theorem, if r = c/d is a solution to equation (3) where c and
d are integers with no common factors, then c divides 4 and d divides 3. Thus c = ±1,±2,±4
and d = ±1,±3, so the only possible rational solutions to equation (3) are

±1,±2,±4,±1/3,±2/3,±4/3

Using a calculator or computer gives the following values for p(x) = 3x4 − 4x3 − x2 − 4x − 4
rounded to 1 decimal place

p(1) = −10 p(2) = 0 p(4) = 476

p(−1) = 6 p(−2) = 80 p(−4) = 1020

p(1/3) = −5.6 p(2/3) = −7.7 p(4/3) = −11.1

p(−1/3) = −2.6 p(−2/3) = 0 p(−4/3) = 18.5

Thus, there are two, and only two, rational solutions to p(x) = 0. The solutions are x = 2 and
x = −2/3.

5. (10 pts) Show by induction using the triangle inequality that

(4) |a1 + a2 + · · · + an| ≤ |a1| + |a2| + · · · + |an|

for all ai ∈ R and all n ≥ 2.
Solution: Recall the triangle inequality states that

|a + b| ≤ |a| + |b| for all a, b ∈ R

Thus the inequality (4) holds for n = 2.
Now assume the inequality (4) holds for a given n ≥ 2 then

|a1 + · · · an + an+1| ≤ |a1 + · · · an| + |an+1| by (4)
≤ |a1| + · · · |an| + |an+1| by the inductive assumption

and the proof is complete.
6. Show that for a, b ∈ R we have
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(a) (10 pts) |a + b| + |a − b| = 2 max{|a|, |b|}.
Solution: We have |a+b| = max{a+b,−a−b}, |a−b| = max{a−b, b−a}, so |a+b|+ |−a−b|
is equal to

max{(a + b) + |a − b|, − a − b + |a − b|}
= max{(a + b) + (a − b), (a + b) − (a − b),

− a − b + (a + b),−a − b,−a − b}
= max{2a, 2b,−2b,−2a}
= 2 max{|a|, |b|}.

(b) (10 pts)
∣∣∣|a + b| − |a − b|

∣∣∣ ≤ 2 min{|a|, |b|}
Solution: Since (a + b) ≤ (a − b) + 2b ≤ |a − b| + 2|b|, we get a + b ≤ |a − b| + 2|b|.
Replacing a by −a and b by −b gives −a − b ≤ |b − a| + 2|b| = |a − b| + 2|b|, therefore
|a + b| = max{a + b,−a − b} ≤ |a − b| + 2|b| and |a + b| − |a − b| ≤ 2|b|.
Switching a and b gives |a+ b| − |a− b| = |b+ a| − |b− a| ≤ 2|a|, so we get |a+ b| − |a− b| ≤
2 min{|a|, |b|}. Replacing b by −b yields

−(|a + b| − |a − b|) = |a − b| − |a + b| ≤ 2 min{|a|, | − b|} = 2 min{|a|, |b|},

so we conclude that ∣∣∣|a + b| − |a − b|
∣∣∣ ≤ 2 min{|a|, |b|}.

7. (15 pts) Given nonempty subsets A and B of R, define the set A − B by

A − B = {a − b : a ∈ A, b ∈ B}.

State and prove a formula for inf(A − B) in terms of inf(A), sup(A), inf(B), and sup(B).
Solution: We will show that

(5) inf(A − B) = inf(A) − sup(B).

Set a B inf(A) and b B sup(B). We prove (5) by first showing that inf(A − B) ≥ a − b, and
then showing that a − b ≥ inf(A − B).

To prove the first inequality, let x ∈ A and y ∈ B. By the definition of a = inf(A), we have
that x ≥ a. Likewise, by the definition of b = sup(B), we have that y ≤ b, or, −y ≥ −b.
Therefore,

x − y ≥ a − b.
Since any element in the set A − B is of the form x − y, for some x ∈ A and y ∈ B, it follows
from the definition of infimum that inf(A − B) ≥ a − b.

To prove the second inequality, let ε > 0. By the definition of a = inf(A), there in an element
x ∈ A such that a + ε/2 ≥ x. Likewise, by the definition of b = sup(B), there in an element
y ∈ B such that b − ε/2 ≤ y, or, −b + ε/2 ≥ −y. Therefore, (a + ε/2) + (−b + ε/2) ≥ x − y, or,

a − b + ε ≥ x − y.

Using now the definition of inf(A − B), we infer that

a − b + ε ≥ inf(A − B).

But this inequality holds for any ε > 0, we conclude that

a − b ≥ inf(A − B),

and this completes the proof.


