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Problem 1. (Problem 1, page 144)

(a) Consider the function f(x) =
∑∞

n=1 x
n.

(1) This is a power series with radius of convergence R = 1. Thus, the series con-
verges absolutely for |x| < 1 and diverges for |x| > 1. Clearly, it also diverges
when x = ±1.

(2) By the general theory, the series converges uniformly on all intervals [−a, a] with
0 < a < 1. On the other hand, it does not converge uniformly on the interval

(−1, 1), since its sequence of partial sums, sk(x) =
∑k

n=1 x
n, is not uniformly

Cauchy on (−1, 1):

sup{|sk(x)− sk−1(x)| | x ∈ (−1, 1)} = sup{|x|k | x ∈ (−1, 1)} = 1.

(3) Also by the general theory, the sum of the series is a continuous function on
any subset S ⊂ R on which the series converges uniformly. Thus, the function
f(x) = x

1−x is continuous on all intervals [−a, a] with 0 < a < 1.

(b) Consider the function f(x) =
∑∞

n=1
1

1−xn .

(1) The series converges absolutely for |x| > 1, since

lim
n→∞

∣∣∣ 1
1−xn

∣∣∣∣∣ 1
xn

∣∣ = lim
n→∞

∣∣∣∣ xn

1− xn

∣∣∣∣ = 1,

and the claim follows by the comparison test with the geometric series of ratio
1
|x| . Furthermore series diverges for |x| ≤ 1, since in this case the sequence 1

1−xn

has limit 1 if |x| < 1, or fails to converge if x = ±1.

(2) The series converges uniformly on all intervals of the form (∞,−a] and [a,∞)
with a > 1, by the Weierstrass M-test. Indeed, on those intervals,∣∣∣∣ 1

1− xn

∣∣∣∣ ≤ 1

|x|n − 1
≤ 1

an − 1
,

and the series
∑∞

n=1
1

an−1 again converges by comparison with the geometric

series of ratio 1/a.

On the other hand, the series does not converge uniformly on the intervals
(∞,−1) and (1,∞), since its sequence of partial sums, is not uniformly Cauchy
on those intervals, e.g.,

sup{|sk(x)− sk−1(x)| | x > 1} = sup{1/|1− xk| | x > 1} =∞.

(3) The function f is continuous on all intervals of the form (∞,−a] and [a,∞) with
a > 1.
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Problem 2. (Problem 2, page 144) Let fn(x) = x+ 1/n and f(x) = x, for x ∈ R.

(a) fn → f uniformly on R, since

sup{|fn(x)− f(x)| | x ∈ R} = 1/n→ 0.

(b) f2n does not converge uniformly to f on R (although f2n → f2 pointwise, since, if
fn → f and gn → g, then always fngn → fg). Indeed,

sup{
∣∣f2n(x)− f2(x)

∣∣ | x ∈ R} = sup{2x+ 1/n2 | x ∈ R} =∞.

Problem 3. (Problem 4, page 144) Let fn(x) = nxe−nx
2
.

(a) fn → 0 pointwise on R. This is clear for x = 0 (since fn(0) = 0), while for x 6= 0,
l’Hospital’s rule gives

lim
n→∞

nx

enx2 = lim
n→∞

x

x2enx2 =
1

x
lim
n→∞

1

(ex2)n
= 0 (since ex

2
> 1).

(b) fn does not converge uniformly to 0 on any interval containing 0. Indeed,

fn(1/
√
n) =

√
n/e

n→∞−−−→∞.
Since any interval containing 0 must contain 1/

√
n for some large enough n, we conclude

that ‖fn‖ → ∞.

(c) On the other hand, fn does converge uniformly to 0 on any interval of the form [a,∞)

with a > 0. Indeed, since enx
2

= 1 + nx2 + 1
2n

2x4 + · · · ,

|fn(x)| = nx

enx2 ≤
2nx

n2x4
=

2

nx3
≤ 2

na3
,

and thus
lim
n→∞

sup{|fn(x)| | x ∈ [a,∞)} = 0.

Problem 4. (Example (3.111)-(d), page 144) Let fn : [0, 2]→ R be defined by

fn(x) =

{
0 if 2/n < x ≤ 2,

n2x2 − 2nx if 0 ≤ x ≤ 2/n.

Note that fn → 0 pointwise, since clearly fn(0) = 0 for all n, and, for all x ∈ (0, 2], there
is an n ∈ N such that x > 2/n, and thus fm(x) = 0 for all m ≥ n.

On the other hand, fn does not converge uniformly to 0. Indeed, note that fn(1/n) = −1
for all n ∈ N, and thus

sup{|fn(x)| | x ∈ [0, 2]} ≥ 1.

Problem 5. (Problem 4, page 183) Let f : [a, b] → R be a continuous function which is differen-
tiable on (a, b). Suppose limx→a+ f

′(x) = A. We need to show that f ′+(a) exists and is
equal to A.

Let ε > 0. From the hypothesis, there is a δ > 0 such that |f ′(x)−A| < ε, for all
a < x < a + δ. Fix such an x. Then, by the MVT, there is an x0 with a < x0 < x such
that

f(x)− f(a)

x− a
= f ′(x0).

Hence, ∣∣∣∣f(x)− f(a)

x− a
−A

∣∣∣∣ =
∣∣f ′(x0)−A∣∣ < ε.

This shows that limx→a+
f(x)−f(a)

x−a = A, that is, f ′+(a) = A.


