Professor Alex Suciu
MATH 3150 Real Analysis Fall 2016

Solutions for Homework 6

Problem 1. (Problem 1, page 144)

(a) Consider the function f(z) =3 7, 2"

n=1

(1) This is a power series with radius of convergence R = 1. Thus, the series con-
verges absolutely for |z| < 1 and diverges for |z| > 1. Clearly, it also diverges
when z = £1.

(2) By the general theory, the series converges uniformly on all intervals [—a, a] with
0 < a < 1. On the other hand, it does not converge uniformly on the interval
(—1,1), since its sequence of partial sums, si(z) = Zﬁzl 2™, is not uniformly
Cauchy on (—1,1):

sup{|si(2) — sp-1(2)| | = € (~1,1)} = sup{|a|" |z € (-1, 1)} = 1.

(3) Also by the general theory, the sum of the series is a continuous function on
any subset S C R on which the series converges uniformly. Thus, the function
f(x) = % is continuous on all intervals [—a, a] with 0 < a < 1.

(b) Consider the function f(z) =32 1

n=11—an"
(1) The series converges absolutely for |z| > 1, since
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lim 7 = lim
and the claim follows by the comparison test with the geometric series of ratio
ﬁ. Furthermore series diverges for |z| < 1, since in this case the sequence ﬁ
has limit 1 if |z| < 1, or fails to converge if x = +1.

(2) The series converges uniformly on all intervals of the form (oo, —a] and [a, c0)
with @ > 1, by the Weierstrass M-test. Indeed, on those intervals,
1 1 1
< < :
l—a2?| = |z|" =1~ a*—1

and the series > >, ﬁ again converges by comparison with the geometric
series of ratio 1/a.

On the other hand, the series does not converge uniformly on the intervals
(00, —1) and (1, 00), since its sequence of partial sums, is not uniformly Cauchy
on those intervals, e.g.,

sup{|sg(z) — sp_1(x)] | z > 1} =sup{1/|1 — ¥ | z > 1} = oc.

(3) The function f is continuous on all intervals of the form (0o, —a] and [a, c0) with
a>1.
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Problem 2. (Problem 2, page 144) Let f,(z) = x4+ 1/n and f(z) = z, for x € R.
(a) fn — f uniformly on R, since
sup{|fn(z) = f(z)| [z € R} =1/n — 0.
(b) f2 does not converge uniformly to f on R (although f2 — f? pointwise, since, if
fn — f and g, — g, then always f,g, — fg). Indeed,
sup{| f2(z) — f*(2)| | € R} = sup{2z + 1/n* | z € R} = oc.

Problem 3. (Problem 4, page 144) Let f,(z) = nze ™*".

(a) fn — 0 pointwise on R. This is clear for x = 0 (since f,(0) = 0), while for = # 0,
I’Hospital’s rule gives
€T 1 . 1

. . . 2
lim = lim —— =— lim —5— =0 (since e® >1).
n—oo enT n—oo p2ene €T n—oo (ew )”

(b) fn does not converge uniformly to 0 on any interval containing 0. Indeed,

fa(1/v/n) = Vnje == oo,
Since any interval containing 0 must contain 1//n for some large enough n, we conclude
that || f,|| — oc.

(c) On the other hand, f,, does converge uniformly to 0 on any interval of the form [a, c0)
with @ > 0. Indeed, since e =1+ na? + %n2x4 +
nw 2nx 2 2
‘fn(@‘zﬁﬁmzmS%?
and thus
Jimsup{|fn(z)[ | z € [a,00)} = 0.

Problem 4. (Example (3.111)-(d), page 144) Let f,,: [0,2] — R be defined by
0 if 2/n <2 <2,
fn(z) = {

n?z? — 2nx if 0 <2 < 2/n.

Note that f,, — 0 pointwise, since clearly f,,(0) = 0 for all n, and, for all = € (0, 2], there
is an n € N such that > 2/n, and thus f,,(z) = 0 for all m > n.

On the other hand, f,, does not converge uniformly to 0. Indeed, note that f,,(1/n) = —1
for all n € N, and thus

sup{|fn(x)| | x € [0,2]} > 1.
Problem 5. (Problem 4, page 183) Let f: [a,b] — R be a continuous function which is differen-

tiable on (a,b). Suppose lim, ,,+ f’(x) = A. We need to show that f’ (a) exists and is
equal to A.

Let € > 0. From the hypothesis, there is a 6 > 0 such that |f'(z) — A| < e, for all
a<x <a+9d. Fix such an . Then, by the MVT, there is an xg with a < zg < x such

that
Hence,
f(z) — f(a)

—A :}f/(:zo)—A‘<e.

Tr—a

This shows that lim,_,,+ [@=J(@) — 4 that is, fi(a) = A.

r—a



