Solutions for Homework 6

Problem 1. (Problem 1, page 144)
(a) Consider the function $f(x)=\sum_{n=1}^{\infty} x^{n}$.
(1) This is a power series with radius of convergence $R=1$. Thus, the series converges absolutely for $|x|<1$ and diverges for $|x|>1$. Clearly, it also diverges when $x= \pm 1$.
(2) By the general theory, the series converges uniformly on all intervals $[-a, a]$ with $0<a<1$. On the other hand, it does not converge uniformly on the interval $(-1,1)$, since its sequence of partial sums, $s_{k}(x)=\sum_{n=1}^{k} x^{n}$, is not uniformly Cauchy on $(-1,1)$:

$$
\sup \left\{\left|s_{k}(x)-s_{k-1}(x)\right| \mid x \in(-1,1)\right\}=\sup \left\{|x|^{k} \mid x \in(-1,1)\right\}=1
$$

(3) Also by the general theory, the sum of the series is a continuous function on any subset $S \subset \mathbb{R}$ on which the series converges uniformly. Thus, the function $f(x)=\frac{x}{1-x}$ is continuous on all intervals $[-a, a]$ with $0<a<1$.
(b) Consider the function $f(x)=\sum_{n=1}^{\infty} \frac{1}{1-x^{n}}$.
(1) The series converges absolutely for $|x|>1$, since

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{1}{1-x^{n}}\right|}{\left|\frac{1}{x^{n}}\right|}=\lim _{n \rightarrow \infty}\left|\frac{x^{n}}{1-x^{n}}\right|=1,
$$

and the claim follows by the comparison test with the geometric series of ratio $\frac{1}{|x|}$. Furthermore series diverges for $|x| \leq 1$, since in this case the sequence $\frac{1}{1-x^{n}}$ has limit 1 if $|x|<1$, or fails to converge if $x= \pm 1$.
(2) The series converges uniformly on all intervals of the form $(\infty,-a]$ and $[a, \infty)$ with $a>1$, by the Weierstrass M-test. Indeed, on those intervals,

$$
\left|\frac{1}{1-x^{n}}\right| \leq \frac{1}{|x|^{n}-1} \leq \frac{1}{a^{n}-1}
$$

and the series $\sum_{n=1}^{\infty} \frac{1}{a^{n}-1}$ again converges by comparison with the geometric series of ratio $1 / a$.
On the other hand, the series does not converge uniformly on the intervals $(\infty,-1)$ and $(1, \infty)$, since its sequence of partial sums, is not uniformly Cauchy on those intervals, e.g.,

$$
\sup \left\{\left|s_{k}(x)-s_{k-1}(x)\right| \mid x>1\right\}=\sup \left\{1 /\left|1-x^{k}\right| \mid x>1\right\}=\infty .
$$

(3) The function f is continuous on all intervals of the form $(\infty,-a]$ and $[a, \infty)$ with $a>1$.

Problem 2. (Problem 2, page 144) Let $f_{n}(x)=x+1 / n$ and $f(x)=x$, for $x \in \mathbb{R}$.
(a) $f_{n} \rightarrow f$ uniformly on \mathbb{R}, since

$$
\sup \left\{\left|f_{n}(x)-f(x)\right| \mid x \in \mathbb{R}\right\}=1 / n \rightarrow 0
$$

(b) f_{n}^{2} does not converge uniformly to f on \mathbb{R} (although $f_{n}^{2} \rightarrow f^{2}$ pointwise, since, if $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$, then always $f_{n} g_{n} \rightarrow f g$). Indeed,

$$
\sup \left\{\left|f_{n}^{2}(x)-f^{2}(x)\right| \mid x \in \mathbb{R}\right\}=\sup \left\{2 x+1 / n^{2} \mid x \in \mathbb{R}\right\}=\infty
$$

Problem 3. (Problem 4, page 144) Let $f_{n}(x)=n x e^{-n x^{2}}$.
(a) $f_{n} \rightarrow 0$ pointwise on \mathbb{R}. This is clear for $x=0\left(\right.$ since $\left.f_{n}(0)=0\right)$, while for $x \neq 0$, l'Hospital's rule gives

$$
\lim _{n \rightarrow \infty} \frac{n x}{e^{n x^{2}}}=\lim _{n \rightarrow \infty} \frac{x}{x^{2} e^{n x^{2}}}=\frac{1}{x} \lim _{n \rightarrow \infty} \frac{1}{\left(e^{x^{2}}\right)^{n}}=0 \quad\left(\text { since } e^{x^{2}}>1\right)
$$

(b) f_{n} does not converge uniformly to 0 on any interval containing 0 . Indeed,

$$
f_{n}(1 / \sqrt{n})=\sqrt{n} / e \xrightarrow{n \rightarrow \infty} \infty
$$

Since any interval containing 0 must contain $1 / \sqrt{n}$ for some large enough n, we conclude that $\left\|f_{n}\right\| \rightarrow \infty$.
(c) On the other hand, f_{n} does converge uniformly to 0 on any interval of the form $[a, \infty)$ with $a>0$. Indeed, since $e^{n x^{2}}=1+n x^{2}+\frac{1}{2} n^{2} x^{4}+\cdots$,

$$
\left|f_{n}(x)\right|=\frac{n x}{e^{n x^{2}}} \leq \frac{2 n x}{n^{2} x^{4}}=\frac{2}{n x^{3}} \leq \frac{2}{n a^{3}},
$$

and thus

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f_{n}(x)\right| \mid x \in[a, \infty)\right\}=0
$$

Problem 4. (Example (3.111)-(d), page 144) Let $f_{n}:[0,2] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)= \begin{cases}0 & \text { if } 2 / n<x \leq 2 \\ n^{2} x^{2}-2 n x & \text { if } 0 \leq x \leq 2 / n\end{cases}
$$

Note that $f_{n} \rightarrow 0$ pointwise, since clearly $f_{n}(0)=0$ for all n, and, for all $x \in(0,2]$, there is an $n \in \mathbb{N}$ such that $x>2 / n$, and thus $f_{m}(x)=0$ for all $m \geq n$.

On the other hand, f_{n} does not converge uniformly to 0 . Indeed, note that $f_{n}(1 / n)=-1$ for all $n \in \mathbb{N}$, and thus

$$
\sup \left\{\left|f_{n}(x)\right| \mid x \in[0,2]\right\} \geq 1
$$

Problem 5. (Problem 4, page 183) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function which is differentiable on (a, b). Suppose $\lim _{x \rightarrow a^{+}} f^{\prime}(x)=A$. We need to show that $f_{+}^{\prime}(a)$ exists and is equal to A.

Let $\epsilon>0$. From the hypothesis, there is a $\delta>0$ such that $\left|f^{\prime}(x)-A\right|<\epsilon$, for all $a<x<a+\delta$. Fix such an x. Then, by the MVT, there is an x_{0} with $a<x_{0}<x$ such that

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}\left(x_{0}\right)
$$

Hence,

$$
\left|\frac{f(x)-f(a)}{x-a}-A\right|=\left|f^{\prime}\left(x_{0}\right)-A\right|<\epsilon .
$$

This shows that $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}=A$, that is, $f_{+}^{\prime}(a)=A$.

