6 points for each problem. Total score: 30 .
(1) $(\# 2-\mathrm{a}) \lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+2 n}-n\right)$

Proof.

$$
\sqrt{n^{2}+2 n}-n=\frac{n^{2}+2 n-n^{2}}{\sqrt{n^{2}+2 n}+n}=\frac{2 n}{\sqrt{n^{2}+2 n}+n}=\frac{2}{\sqrt{1+\frac{2}{n}}+1}
$$

$\frac{2}{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence the answer is 1.
(2) $(\# 7)$

Proof. First, we prove the hint: If $\frac{a}{b} \leq \frac{c}{d}$ and $b, d>0$, then $a d \leq b c$. Adding $a b$ we have $a b+a d \leq b c+a b$ which gives $a(b+d) \leq b(c+a)$. Hence, we have $\frac{a}{b} \leq \frac{a+d}{b+c}$ since both b and $b+d$ are positive. Similarly, adding $c d$ to both sides we have $(a+c) d \leq c(b+d)$ which gives $\frac{a+c}{b+d} \leq \frac{c}{d}$.

Suppose $\frac{x_{n}}{y_{n}}$ is monotonically increasing. For $n=1$, since $\frac{x_{1}}{y_{1}} \leq \frac{x_{2}}{y_{2}}$, using the hint we have

$$
\frac{x_{1}}{y_{1}} \leq \frac{x_{1}+x_{2}}{y_{1}+y_{2}} \leq \frac{x_{2}}{y_{2}} .
$$

Assuming that $z_{n} \leq z_{n+1}$ for all $n \in \mathbb{N}$, we want to show $z_{n+1} \leq z_{n+2}$. From $z_{n} \leq z_{n+1}$, we have

$$
\begin{equation*}
z_{n} \leq \frac{x_{n+1}}{y_{n+1}} \tag{*}
\end{equation*}
$$

This is because if not, then

$$
\frac{x_{n+1}}{y_{n+1}}<z_{n}=\frac{x_{1}+\cdots+x_{n}}{y_{1}+\cdots+y_{n}} .
$$

Apply the hint and we have

$$
\frac{x_{1}+\cdots+x_{n}+x_{n+1}}{y_{1}+\cdots+y_{n}+y_{n+1}} \leq z_{n}
$$

i.e., $z_{n+1} \leq z_{n}$, a contradiction.

Now, using (*) and the hint, we have

$$
z_{n+1}=\frac{x_{1}+\cdots+x_{n}+x_{n+1}}{y_{1}+\cdots+y_{n}+y_{n+1}} \leq \frac{x_{n+1}}{y_{n+1}} \leq \frac{x_{n+2}}{y_{n+2}} .
$$

Apply the hint again, we get

$$
z_{n+1}=\frac{x_{1}+\cdots+x_{n}+x_{n+1}}{y_{1}+\cdots+y_{n}+y_{n+1}} \leq \frac{x_{1}+\cdots+x_{n+1}+x_{n+2}}{y_{1}+\cdots+y_{n+1}+y_{n+2}}=z_{n+2} .
$$

The decreasing case can be shown similarly.
(3) (\# 8)

Proof. First we prove the hint. Given $0<\alpha<\beta$, we have $\sqrt{\alpha \beta} / \alpha=\sqrt{\beta / \alpha}>1$ by which we have shown $\alpha<\sqrt{\alpha \beta}$. It is trivial to see $\alpha<(\alpha+\beta) / 2<\beta$. It remains to show that $\sqrt{\alpha \beta}<(\alpha+\beta) / 2$. This is immediate from

$$
4 \alpha \beta<(\alpha+\beta)^{2}
$$

which is from

$$
0<(\alpha-\beta)^{2}
$$

Now, with the hint, we what to show that the sequence x_{n} is an alternating sequence as in (2.14) of the textbook. By induction, for $n=1$, we immediately have

$$
x_{1}=a<x_{3}=\sqrt{a b}<x_{4}=(a+b) / 2<x_{2}=b
$$

Assume that we have

$$
x_{2 n-1}<x_{2 n+1}<x_{2 n+2}<x_{2 n}
$$

The middle inequality and the hint imply

$$
x_{2 n+1}<\sqrt{x_{2 n+1} x_{2 n+2}}<\left(x_{2 n+1} x_{2 n+2}\right) / 2<x_{2 n+2}
$$

i.e.,

$$
x_{2 n+1}<x_{2 n+3}<x_{2 n+4}<x_{2 n+2}
$$

which completes the induction to prove the alternating property.
To show $\lim _{n \rightarrow \infty} x_{2 n}-x_{2 n-1}=0$, we use induction to show that $x_{2 n}-x_{2 n-1} \leq(b-a) / 2^{n-1}$. For $n=1$, we have $x_{2}-x_{1}=b-a$, which verifies the statement. Assume it is true for n, then
$x_{2 n+2}-x_{2 n+1}<x_{2 n+2}-x_{2 n-1}=\left(x_{2 n}-x_{2 n-1}\right) / 2 \leq(b-a) /\left(2^{n-1} \cdot 2\right)=(b-a) / 2^{n}$.
This completes the proof of the shrinking property since $(b-a) / 2^{n} \rightarrow 0$ as $n \rightarrow \infty$.
Then by (2.14), the sequence x_{n} converges.
(4) (\#15) Compute x_{n+2}, x_{n+3} and x_{n+4} using the recursive equation $x_{n+1}=2-2 / x_{n}$ we have

$$
x_{n+2}=\frac{x_{n}-2}{x_{n}-1}, x_{n+3}=-\frac{2}{x_{n}-2}, x_{n+4}=x_{n}
$$

Therefore, the sequence repeats the cycle $\{a, 2-2 / a,(a-2) /(a-1), 2 /(2-a)\}(a \neq 0,1,2)$.
So the cluster set consists of these four numbers.
(5) (\#18-b) Rewrite the limit as

$$
\lim _{n \rightarrow \infty}\left[\frac{(2 n)!}{n!n^{n}}\right]^{1 / n}
$$

and let

$$
a_{n}=\frac{(2 n)!}{n!n^{n}}
$$

Since

$$
\frac{a_{n+1}}{a_{n}}=\frac{\frac{(2 n+2)!}{(n+1)!(n+1)^{n+1}}}{\frac{(2 n)!}{n!n^{n}}}=\frac{2(2 n+1)}{n+1}\left(\frac{n}{n+1}\right)^{n}
$$

Then since $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$, we have

$$
\left(\frac{n}{n+1}\right)^{n} \rightarrow e^{-1}
$$

Also, it is easy to see $2(2 n+1) /(n+1) \rightarrow 4$. Therefore, $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=4 / e$. By (2.26), we have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=4 / e
$$

This gives the answer.

