
MATH 3150 - Fall 2016  Solutions to Homework #2

(1) (#2-a) lim
n→∞

(

6 points for each problem. Total score: 30.√
n2 + 2n− n)

Proof. √
n2 + 2n− n =

n2 + 2n− n2√
n2 + 2n+ n

=
2n√

n2 + 2n+ n
=

2√
1 + 2

n + 1

2

n
→ 0 as n→∞. Hence the answer is 1. �

(2) (#7)

Proof. First, we prove the hint: If a
b ≤

c
d and b, d > 0, then ad ≤ bc. Adding ab we have

ab + ad ≤ bc + ab which gives a(b + d) ≤ b(c + a). Hence, we have a
b ≤

a+d
b+c since both b

and b+ d are positive. Similarly, adding cd to both sides we have (a+ c)d ≤ c(b+ d) which
gives a+c

b+d ≤
c
d .

Suppose xn
yn

is monotonically increasing. For n = 1, since x1
y1
≤ x2

y2
, using the hint we have

x1
y1
≤ x1 + x2
y1 + y2

≤ x2
y2
.

Assuming that zn ≤ zn+1 for all n ∈ N, we want to show zn+1 ≤ zn+2. From zn ≤ zn+1,
we have

zn ≤
xn+1

yn+1
(∗).

This is because if not, then

xn+1

yn+1
< zn =

x1 + · · ·+ xn
y1 + · · ·+ yn

.

Apply the hint and we have

x1 + · · ·+ xn + xn+1

y1 + · · ·+ yn + yn+1
≤ zn,

i.e., zn+1 ≤ zn, a contradiction.
Now, using (∗) and the hint, we have

zn+1 =
x1 + · · ·+ xn + xn+1

y1 + · · ·+ yn + yn+1
≤ xn+1

yn+1
≤ xn+2

yn+2
.

Apply the hint again, we get

zn+1 =
x1 + · · ·+ xn + xn+1

y1 + · · ·+ yn + yn+1
≤ x1 + · · ·+ xn+1 + xn+2

y1 + · · ·+ yn+1 + yn+2
= zn+2.

The decreasing case can be shown similarly. �

(3) (# 8)

Proof. First we prove the hint. Given 0 < α < β, we have
√
αβ/α =

√
β/α > 1 by which

we have shown α <
√
αβ. It is trivial to see α < (α + β)/2 < β. It remains to show that√

αβ < (α+ β)/2. This is immediate from

4αβ < (α+ β)2
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which is from

0 < (α− β)2.

Now, with the hint, we what to show that the sequence xn is an alternating sequence as
in (2.14) of the textbook. By induction, for n = 1, we immediately have

x1 = a < x3 =
√
ab < x4 = (a+ b)/2 < x2 = b.

Assume that we have

x2n−1 < x2n+1 < x2n+2 < x2n.

The middle inequality and the hint imply

x2n+1 <
√
x2n+1x2n+2 < (x2n+1x2n+2)/2 < x2n+2

i.e.,

x2n+1 < x2n+3 < x2n+4 < x2n+2

which completes the induction to prove the alternating property.
To show lim

n→∞
x2n−x2n−1 = 0, we use induction to show that x2n−x2n−1 ≤ (b−a)/2n−1.

For n = 1, we have x2 − x1 = b− a, which verifies the statement. Assume it is true for n,
then

x2n+2 − x2n+1 < x2n+2 − x2n−1 = (x2n − x2n−1)/2 ≤ (b− a)/(2n−1 · 2) = (b− a)/2n.

This completes the proof of the shrinking property since (b− a)/2n → 0 as n→∞.
Then by (2.14), the sequence xn converges. �

(4) (#15) Compute xn+2, xn+3 and xn+4 using the recursive equation xn+1 = 2−2/xn we have

xn+2 =
xn − 2

xn − 1
, xn+3 = − 2

xn − 2
, xn+4 = xn.

Therefore, the sequence repeats the cycle {a, 2−2/a, (a−2)/(a−1), 2/(2−a)} (a 6= 0, 1, 2).
So the cluster set consists of these four numbers.

(5) (#18-b) Rewrite the limit as

lim
n→∞

[
(2n)!

n!nn

]1/n
and let

an =
(2n)!

n!nn
.

Since

an+1

an
=

(2n+2)!
(n+1)!(n+1)n+1

(2n)!
n!nn

=
2(2n+ 1)

n+ 1

(
n

n+ 1

)n

Then since (1 + 1
n)n → e as n→∞, we have(

n

n+ 1

)n

→ e−1.

Also, it is easy to see 2(2n+ 1)/(n+ 1)→ 4. Therefore, lim
n→∞

an+1/an = 4/e. By (2.26), we

have

lim
n→∞

n
√
an = 4/e.

This gives the answer.




