Math 3150 Midterm Exam Fall 2014

Problem 1. Complete the following statements.

(a) A sequence x_n in a metric space (M, d) is Cauchy if and only if:

Solution. For all $\varepsilon > 0$, there exists an N such that for all $n, m \ge N$, $d(x_m, x_n) < \varepsilon$. \Box

(b) $a \in \mathbb{R}$ is the *infimum* of a set $A \subset \mathbb{R}$ if and only if:

Solution. $a \leq x$ for all $x \in A$ and for all $\varepsilon > 0$, there exists an $x \in A$ such that $x < a + \varepsilon$. Alternatively, $a \leq x$ for all $x \in A$, and if a' is another point such that $a' \leq x$ for all $x \in A$, then $a' \leq a$.

(c) A point x is in the *interior* of a set $B \subset \mathbb{R}^n$ if and only if:

Solution. There exists some $\varepsilon > 0$ such that $D(x, \varepsilon) \subset B$.

(d) A point x is an accumulation point of a set $C \subset \mathbb{R}^n$ if and only if:

Solution. For all $\varepsilon > 0$, $D(x, \varepsilon)$ contains some point of C other than x.

Problem 2. Define a sequence x_n in \mathbb{R} recursively by setting $x_0 = 0$ and $x_n = \sqrt{8 + 2x_{n-1}}$ for $n \ge 1$.

(a) Show by induction that x_n is bounded above by 4.

Solution. $x_0 = 0 \le 4$ provides the base case. For the inductive case, assume $x_{n-1} \le 4$. Then

$$x_n = \sqrt{8 + 2x_{n-1}} \le \sqrt{8 + 2(4)} = \sqrt{16} = 4$$

completing the induction.

(b) Show by induction that x_n is monotone increasing. (Hint: multiply and divide $(x_n - x_{n-1})$ by $(x_n + x_{n-1})$.)

Solution. Let $r_n = x_n - x_{n-1}$. We want to show $r_n \ge 0$ for all n. The base case is $r_1 = x_1 - x_0 = \sqrt{8} - 0 \ge 0$. For the inductive case, assume $r_{n-1} \ge 0$. Then

$$r_{n} = x_{n} - x_{n-1}$$

$$= \frac{(x_{n} - x_{n-1})(x_{n} + x_{n-1})}{x_{n} + x_{n-1}}$$

$$= \frac{x_{n}^{2} - x_{n-1}^{2}}{x_{n} + x_{n-1}}$$

$$= \frac{8 + 2x_{n-1} - 8 - 2x_{n-2}}{x_{n} + x_{n-1}}$$

$$= \frac{2r_{n-1}}{x_{n} + x_{n-1}} \ge 0,$$

since $x_n + x_{n-1}$ is positive.

(c) Prove that x_n converges and compute $\lim_{n\to\infty} x_n$.

Solution. x_n is monotone increasing and bounded above, so by completeness of \mathbb{R} , x_n converges to some x. To compute it, we note that

$$x^{2} = \lim_{n \to \infty} x_{n}^{2} = 8 + 2\lim_{n \to \infty} x_{n-1} = 8 + 2x.$$

So x is a solution of the quadratic equation $x^2 - 2x - 8 = (x - 4)(x + 2) = 0$. Either x = 4 or x = -2, but the latter is ruled out since $x_0 = 0 > -2$ and x_n is increasing. \Box

Problem 3. Let $A \subset \mathbb{R}^2$ be the set

$$A = \left\{ (x_1, x_2) \mid x_2 < 0, \text{ and } x_1^2 + x_2^2 < 1 \right\} \cup \left\{ (0, x_2) \mid 0 \le x_2 \le \frac{1}{2} \right\} \cup \left\{ (1, 1) \right\} \cup \left\{ (-1, 1) \right\}$$

(a) Draw a picture of A.

Solution.

(b) What is the interior of A?

Solution. The interior is the set

$$int(A) = \left\{ (x_1, x_2) \mid x_2 < 0, \text{ and } x_1^2 + x_2^2 < 1 \right\}$$

(c) What is the boundary of A?

Solution. The boundary is the set

$$bd(A) = \{ (x_1, 0) \mid -1 \le x_1 \le 1 \}$$

$$\cup \{ (x_1, x_2) \mid -1 \le x_1 \le 1, \ x_2 = -\sqrt{1 - x_1} \}$$

$$\cup \{ (0, x_2) \mid 0 \le x_2 \le \frac{1}{2} \}$$

$$\cup \{ (1, 1) \} \cup \{ (-1, 1) \}.$$

Problem 4. Find the cluster points of the sequence x_n in \mathbb{R}^2 , where

$$x_n = \left(\sin\left(\frac{n\pi}{2}\right) + \frac{(-1)^n}{2^n}, \cos\left(\frac{n\pi}{2}\right)\left(1 + \frac{1}{n}\right)\right)$$

Solution. Since $\sin(\frac{n\pi}{2})$ and $\cos(\frac{n\pi}{2})$ oscillate between the values 0, 1 and -1 with period 4, while $\frac{(-1)^n}{2^n} \longrightarrow 0$ and $1 + \frac{1}{n} \longrightarrow 1$, there are four important subsequences to consider:

$$v_{n(k)} = x_{4k} = \left(0 + \frac{(-1)^{4k}}{2^{4k}}, 1\left(1 + \frac{1}{4k}\right)\right) \longrightarrow (0, 1)$$

$$w_{n(k)} = x_{4k+1} = \left(1 + \frac{(-1)^{4k+1}}{2^{4k+1}}, 0\left(1 + \frac{1}{4k+1}\right)\right) \longrightarrow (1, 0)$$

$$y_{n(k)} = x_{4k+2} = \left(0 + \frac{(-1)^{4k+2}}{2^{4k+2}}, -1\left(1 + \frac{1}{4k+2}\right)\right) \longrightarrow (0, -1)$$

$$z_{n(k)} = x_{4k+4} = \left(-1 + \frac{(-1)^{4k+3}}{2^{4k+3}}, 0\left(1 + \frac{1}{4k+3}\right)\right) \longrightarrow (-1, 0)$$

Thus the cluster points are $(\pm 1, 0)$ and $(0, \pm 1)$.

. 6		

Problem 5. Determine whether the following statements are *true* or *false*. Justify your answers by giving a proof (if true) or a counterexample (if false).

(a) For any set $A \subset \mathbb{R}^n$, if $x \in bd(A)$ then x is an accumulation point of A.

Solution. False. Consider the example

$$A = \{0\}$$
.

Then $bd(A) = A = \{0\}$ but A has no accumulation points.

(b) For any set A in a metric space M, no point can be simultaneously in cl(A) and $int(M \setminus A)$.

Solution. True. The closure of A is the complement of the interior of the complement of A: A(A) = A(A) = A(A) = A(A)

$$\operatorname{cl}(A) = M \setminus \operatorname{int}(M \setminus A),$$

in particular $cl(A) \cap int(M \setminus A) = \emptyset$.

(c) If $A \subset \mathbb{R}$ has closure $cl(A) = \mathbb{R}$, then $int(A) \neq \emptyset$.

Solution. False. Consider

$$A = \mathbb{Q} \subset \mathbb{R}.$$

Then $int(A) = \emptyset$ while $cl(A) = \mathbb{R}$.

Problem 6. Let (M, d) be a (not necessarily complete) metric space.

(a) Let p, q, s, and t be any four points in M. Show that

$$d(p,t) \le d(p,q) + d(q,s) + d(s,t)$$

Solution. Use the triangle inequality twice:

$$\begin{aligned} d(p,t) &\leq d(p,q) + d(q,t) \\ d(p,q) + d(q,s) + d(s,t). \Box \end{aligned}$$

(b) Suppose x_n and y_n are two Cauchy sequences in M, and let $r_n = d(x_n, y_n)$ be the sequence in \mathbb{R} consisting of the distances between their respective terms. Show that r_n converges in \mathbb{R} .

(Hint: consider the result of part (a) with $p = x_n$, $q = x_m$, $s = y_m$ and $t = y_n$.)

Solution. From part (a), it follows that

$$d(x_n, y_n) \le d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n).$$

Subtracting $d(x_m, y_m)$ from both sides, we get

$$d(x_n, y_n) - d(x_m, y_m) \le d(x_n, x_m) + d(y_m, y_n).$$

Similarly, we can show

$$d(x_m, y_m) - d(x_n, y_n) \le d(x_n, x_m) + d(y_m, y_n),$$

so that

$$|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_n, y_m).$$
(1)

Since x_n and y_n are Cauchy, given any $\varepsilon > 0$, there exist N_1 and N_2 such that

$$\begin{array}{l} n,m\geq N_1 \implies d(x_n,x_m)<\frac{\varepsilon}{2}\\ n,m\geq N_2 \implies d(y_n,y_m)<\frac{\varepsilon}{2}. \end{array}$$

Taking $N = \max{\{N_1, N_2\}}$, it follows from (1) that for all $n, m \ge N$,

$$|r_n - r_m| \le d(x_n, x_m) + d(y_n, y_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus r_n is Cauchy, and since \mathbb{R} is complete, r_n converges.