Math 3150 Midterm Exam Fall 2014

Problem 1. Complete the following statements.
(a) A sequence x_{n} in a metric space (M, d) is Cauchy if and only if:

Solution. For all $\varepsilon>0$, there exists an N such that for all $n, m \geq N, d\left(x_{m}, x_{n}\right)<\varepsilon$.
(b) $a \in \mathbb{R}$ is the infimum of a set $A \subset \mathbb{R}$ if and only if:

Solution. $a \leq x$ for all $x \in A$ and for all $\varepsilon>0$, there exists an $x \in A$ such that $x<a+\varepsilon$.
Alternatively, $a \leq x$ for all $x \in A$, and if a^{\prime} is another point such that $a^{\prime} \leq x$ for all $x \in A$, then $a^{\prime} \leq a$.
(c) A point x is in the interior of a set $B \subset \mathbb{R}^{n}$ if and only if:

Solution. There exists some $\varepsilon>0$ such that $D(x, \varepsilon) \subset B$.
(d) A point x is an accumulation point of a set $C \subset \mathbb{R}^{n}$ if and only if:

Solution. For all $\varepsilon>0, D(x, \varepsilon)$ contains some point of C other than x.

Problem 2. Define a sequence x_{n} in \mathbb{R} recursively by setting $x_{0}=0$ and $x_{n}=\sqrt{8+2 x_{n-1}}$ for $n \geq 1$.
(a) Show by induction that x_{n} is bounded above by 4 .

Solution. $x_{0}=0 \leq 4$ provides the base case. For the inductive case, assume $x_{n-1} \leq 4$. Then

$$
x_{n}=\sqrt{8+2 x_{n-1}} \leq \sqrt{8+2(4)}=\sqrt{16}=4,
$$

completing the induction.
(b) Show by induction that x_{n} is monotone increasing. (Hint: multiply and divide ($x_{n}-x_{n-1}$) by $\left(x_{n}+x_{n-1}\right)$.)

Solution. Let $r_{n}=x_{n}-x_{n-1}$. We want to show $r_{n} \geq 0$ for all n. The base case is $r_{1}=x_{1}-x_{0}=\sqrt{8}-0 \geq 0$. For the inductive case, assume $r_{n-1} \geq 0$. Then

$$
\begin{aligned}
r_{n} & =x_{n}-x_{n-1} \\
& =\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}+x_{n-1}\right)}{x_{n}+x_{n-1}} \\
& =\frac{x_{n}^{2}-x_{n-1}^{2}}{x_{n}+x_{n-1}} \\
& =\frac{8+2 x_{n-1}-8-2 x_{n-2}}{x_{n}+x_{n-1}} \\
& =\frac{2 r_{n-1}}{x_{n}+x_{n-1}} \geq 0,
\end{aligned}
$$

since $x_{n}+x_{n-1}$ is positive.
(c) Prove that x_{n} converges and compute $\lim _{n \rightarrow \infty} x_{n}$.

Solution. x_{n} is monotone increasing and bounded above, so by completeness of \mathbb{R}, x_{n} converges to some x. To compute it, we note that

$$
x^{2}=\lim _{n \rightarrow \infty} x_{n}^{2}=8+2 \lim _{n \rightarrow \infty} x_{n-1}=8+2 x .
$$

So x is a solution of the quadratic equation $x^{2}-2 x-8=(x-4)(x+2)=0$. Either $x=4$ or $x=-2$, but the latter is ruled out since $x_{0}=0>-2$ and x_{n} is increasing.

Problem 3. Let $A \subset \mathbb{R}^{2}$ be the set

$$
A=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}<0, \text { and } x_{1}^{2}+x_{2}^{2}<1\right\} \cup\left\{\left(0, x_{2}\right) \left\lvert\, 0 \leq x_{2} \leq \frac{1}{2}\right.\right\} \cup\{(1,1)\} \cup\{(-1,1)\}
$$

(a) Draw a picture of A.

Solution.

(b) What is the interior of A ?

Solution. The interior is the set

$$
\operatorname{int}(A)=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}<0, \text { and } x_{1}^{2}+x_{2}^{2}<1\right\}
$$

(c) What is the boundary of A ?

Solution. The boundary is the set

$$
\begin{aligned}
\operatorname{bd}(A)= & \left\{\left(x_{1}, 0\right) \mid-1 \leq x_{1} \leq 1\right\} \\
& \cup\left\{\left(x_{1}, x_{2}\right) \mid-1 \leq x_{1} \leq 1, x_{2}=-\sqrt{1-x_{1}}\right\} \\
& \cup\left\{\left(0, x_{2}\right) \left\lvert\, 0 \leq x_{2} \leq \frac{1}{2}\right.\right\} \\
& \cup\{(1,1)\} \cup\{(-1,1)\} .
\end{aligned}
$$

Problem 4. Find the cluster points of the sequence x_{n} in \mathbb{R}^{2}, where

$$
x_{n}=\left(\sin \left(\frac{n \pi}{2}\right)+\frac{(-1)^{n}}{2^{n}}, \cos \left(\frac{n \pi}{2}\right)\left(1+\frac{1}{n}\right)\right)
$$

Solution. Since $\sin \left(\frac{n \pi}{2}\right)$ and $\cos \left(\frac{n \pi}{2}\right)$ oscillate between the values 0,1 and -1 with period 4 , while $\frac{(-1)^{n}}{2^{n}} \longrightarrow 0$ and $1+\frac{1}{n} \longrightarrow 1$, there are four important subsequences to consider:

$$
\begin{aligned}
v_{n(k)} & =x_{4 k}=\left(0+\frac{(-1)^{4 k}}{2^{4 k}}, 1\left(1+\frac{1}{4 k}\right)\right) \longrightarrow(0,1) \\
w_{n(k)} & =x_{4 k+1}=\left(1+\frac{(-)^{4 k+1}}{2^{4 k+1}}, 0\left(1+\frac{1}{4 k+1}\right)\right) \longrightarrow(1,0) \\
y_{n(k)} & =x_{4 k+2}=\left(0+\frac{(-1)^{4 k+2}}{2^{4 k+2}},-1\left(1+\frac{1}{4 k+2}\right)\right) \longrightarrow(0,-1) \\
z_{n(k)} & =x_{4 k+4}=\left(-1+\frac{(-1)^{4 k+3}}{2^{4 k+3}}, 0\left(1+\frac{1}{4 k+3}\right)\right) \longrightarrow(-1,0)
\end{aligned}
$$

Thus the cluster points are $(\pm 1,0)$ and $(0, \pm 1)$.

Problem 5. Determine whether the following statements are true or false. Justify your answers by giving a proof (if true) or a counterexample (if false).
(a) For any set $A \subset \mathbb{R}^{n}$, if $x \in \operatorname{bd}(A)$ then x is an accumulation point of A.

Solution. False. Consider the example

$$
A=\{0\} .
$$

Then $\operatorname{bd}(A)=A=\{0\}$ but A has no accumulation points.
(b) For any set A in a metric space M, no point can be simultaneously in $\operatorname{cl}(A)$ and $\operatorname{int}(M \backslash A)$.

Solution. True. The closure of A is the complement of the interior of the complement of A :

$$
\operatorname{cl}(A)=M \backslash \operatorname{int}(M \backslash A)
$$

in particular $\operatorname{cl}(A) \cap \operatorname{int}(M \backslash A)=\emptyset$.
(c) If $A \subset \mathbb{R}$ has closure $\operatorname{cl}(A)=\mathbb{R}$, then $\operatorname{int}(A) \neq \emptyset$.

Solution. False. Consider

$$
A=\mathbb{Q} \subset \mathbb{R}
$$

Then $\operatorname{int}(A)=\emptyset$ while $\operatorname{cl}(A)=\mathbb{R}$.

Problem 6. Let (M, d) be a (not necessarily complete) metric space.
(a) Let p, q, s, and t be any four points in M. Show that

$$
d(p, t) \leq d(p, q)+d(q, s)+d(s, t) .
$$

Solution. Use the triangle inequality twice:

$$
\begin{aligned}
& d(p, t) \leq d(p, q)+d(q, t) \\
& \quad d(p, q)+d(q, s)+d(s, t)
\end{aligned}
$$

(b) Suppose x_{n} and y_{n} are two Cauchy sequences in M, and let $r_{n}=d\left(x_{n}, y_{n}\right)$ be the sequence in \mathbb{R} consisting of the distances between their respective terms. Show that r_{n} converges in \mathbb{R}.
(Hint: consider the result of part (a) with $p=x_{n}, q=x_{m}, s=y_{m}$ and $t=y_{n}$.)
Solution. From part (a), it follows that

$$
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right) .
$$

Subtracting $d\left(x_{m}, y_{m}\right)$ from both sides, we get

$$
d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

Similarly, we can show

$$
d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(y_{m}, y_{n}\right),
$$

so that

$$
\begin{equation*}
\left|d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right)\right| \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right) \tag{1}
\end{equation*}
$$

Since x_{n} and y_{n} are Cauchy, given any $\varepsilon>0$, there exist N_{1} and N_{2} such that

$$
\begin{aligned}
& n, m \geq N_{1} \Longrightarrow d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{2} \\
& n, m \geq N_{2} \Longrightarrow d\left(y_{n}, y_{m}\right)<\frac{\varepsilon}{2} .
\end{aligned}
$$

Taking $N=\max \left\{N_{1}, N_{2}\right\}$, it follows from (1) that for all $n, m \geq N$,

$$
\left|r_{n}-r_{m}\right| \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Thus r_{n} is Cauchy, and since \mathbb{R} is complete, r_{n} converges.

