Math 3150 Midterm Exam Fall 2014

Name: \qquad

- The exam will last 100 minutes.
- There are 6 problems worth 12 points each.
- No notes or other study materials allowed.
- Use the back side of the test pages for scratch work, or if you need extra space.

1	
2	
3	
4	
5	
6	
Total	

Problem 1. Complete the following statements.
(a) A sequence x_{n} in a metric space (M, d) is Cauchy if and only if:
(b) $a \in \mathbb{R}$ is the infimum of a set $A \subset \mathbb{R}$ if and only if:
(c) A point x is in the interior of a set $B \subset \mathbb{R}^{n}$ if and only if:
(d) A point x is an accumulation point of a set $C \subset \mathbb{R}^{n}$ if and only if:

Problem 2. Define a sequence x_{n} in \mathbb{R} recursively by setting $x_{0}=0$ and $x_{n}=\sqrt{8+2 x_{n-1}}$ for $n \geq 1$.
(a) Show by induction that x_{n} is bounded above by 4 .
(b) Show by induction that x_{n} is monotone increasing. (Hint: multiply and divide ($x_{n}-x_{n-1}$) by $\left(x_{n}+x_{n-1}\right)$.)
(c) Prove that x_{n} converges and compute $\lim _{n \rightarrow \infty} x_{n}$.

Problem 3. Let $A \subset \mathbb{R}^{2}$ be the set

$$
A=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}<0, \text { and } x_{1}^{2}+x_{2}^{2}<1\right\} \cup\left\{\left(0, x_{2}\right) \left\lvert\, 0 \leq x_{2} \leq \frac{1}{2}\right.\right\} \cup\{(1,1)\} \cup\{(-1,1)\}
$$

(a) Draw a picture of A.
(b) What is the interior of A ?
(c) What is the boundary of A ?

Problem 4. Find the cluster points of the sequence x_{n} in \mathbb{R}^{2}, where

$$
x_{n}=\left(\sin \left(\frac{n \pi}{2}\right)+\frac{(-1)^{n}}{2^{n}}, \cos \left(\frac{n \pi}{2}\right)\left(1+\frac{1}{n}\right)\right)
$$

Problem 5. Determine whether the following statements are true or false. Justify your answers by giving a proof (if true) or a counterexample (if false).
(a) For any set $A \subset \mathbb{R}^{n}$, if $x \in \operatorname{bd}(A)$ then x is an accumulation point of A.
(b) For any set A in a metric space M, no point can be simultaneously in $\operatorname{cl}(A)$ and $\operatorname{int}(M \backslash A)$.
(c) If $A \subset \mathbb{R}$ has closure $\operatorname{cl}(A)=\mathbb{R}$, then $\operatorname{int}(A) \neq \emptyset$.

Problem 6. Let (M, d) be a (not necessarily complete) metric space.
(a) Let p, q, s, and t be any four points in M. Show that

$$
d(p, t) \leq d(p, q)+d(q, s)+d(s, t) .
$$

(b) Suppose x_{n} and y_{n} are two Cauchy sequences in M, and let $r_{n}=d\left(x_{n}, y_{n}\right)$ be the sequence in \mathbb{R} consisting of the distances between their respective terms. Show that r_{n} converges in \mathbb{R}.
(Hint: consider the result of part (a) with $p=x_{n}, q=x_{m}, s=y_{m}$ and $t=y_{n}$.)

