Math 3150 Midterm Exam Fall 2014

Name: _____

- The exam will last 100 minutes.
- There are 6 problems worth 12 points each.
- No notes or other study materials allowed.
- Use the back side of the test pages for scratch work, or if you need extra space.

Problem 1. Complete the following statements.

(a) A sequence x_n in a metric space (M, d) is Cauchy if and only if:

(b) $a \in \mathbb{R}$ is the *infimum* of a set $A \subset \mathbb{R}$ if and only if:

(c) A point x is in the *interior* of a set $B \subset \mathbb{R}^n$ if and only if:

(d) A point x is an accumulation point of a set $C\subset \mathbb{R}^n$ if and only if:

Problem 2. Define a sequence x_n in \mathbb{R} recursively by setting $x_0 = 0$ and $x_n = \sqrt{8 + 2x_{n-1}}$ for $n \ge 1$.

(a) Show by induction that x_n is bounded above by 4.

(b) Show by induction that x_n is monotone increasing. (Hint: multiply and divide $(x_n - x_{n-1})$ by $(x_n + x_{n-1})$.)

(c) Prove that x_n converges and compute $\lim_{n\to\infty} x_n$.

Problem 3. Let $A \subset \mathbb{R}^2$ be the set

 $A = \left\{ (x_1, x_2) \mid x_2 < 0, \text{ and } x_1^2 + x_2^2 < 1 \right\} \cup \left\{ (0, x_2) \mid 0 \le x_2 \le \frac{1}{2} \right\} \cup \left\{ (1, 1) \right\} \cup \left\{ (-1, 1) \right\}$

(a) Draw a picture of A.

(b) What is the interior of A?

(c) What is the boundary of A?

Problem 4. Find the cluster points of the sequence x_n in \mathbb{R}^2 , where

$$x_n = \left(\sin\left(\frac{n\pi}{2}\right) + \frac{(-1)^n}{2^n}, \cos\left(\frac{n\pi}{2}\right)\left(1 + \frac{1}{n}\right)\right)$$

Problem 5. Determine whether the following statements are *true* or *false*. Justify your answers by giving a proof (if true) or a counterexample (if false).

(a) For any set $A \subset \mathbb{R}^n$, if $x \in bd(A)$ then x is an accumulation point of A.

(b) For any set A in a metric space M, no point can be simultaneously in cl(A) and $int(M \setminus A)$.

(c) If $A \subset \mathbb{R}$ has closure $cl(A) = \mathbb{R}$, then $int(A) \neq \emptyset$.

Problem 6. Let (M, d) be a (not necessarily complete) metric space.

(a) Let p, q, s, and t be any four points in M. Show that

 $d(p,t) \le d(p,q) + d(q,s) + d(s,t).$

(b) Suppose x_n and y_n are two Cauchy sequences in M, and let $r_n = d(x_n, y_n)$ be the sequence in \mathbb{R} consisting of the distances between their respective terms. Show that r_n converges in \mathbb{R} .

(Hint: consider the result of part (a) with $p = x_n$, $q = x_m$, $s = y_m$ and $t = y_n$.)