MATH 3150 - HOMEWORK 7

Problem 1 (p. 236, \#43). Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous and set $F(x)=\int_{0}^{x^{2}} f(y) d y$. Prove that $F^{\prime}(x)=2 x f\left(x^{2}\right)$. State a more general theorem.

Problem 2 (p. 316, \#2). Determine which of the following sequences converge (pointwise or uniformly) as $k \rightarrow \infty$. Check the continuity of the limit in each case.
(a) $(\sin x) / k$ on \mathbb{R}
(b) $1 /(k x+1)$ on $(0,1)$
(c) $x /(k x+1)$ on $(0,1)$
(d) $x /\left(1+k x^{2}\right)$ on \mathbb{R}
(e) $\left(1,(\cos x) / k^{2}\right)$, as functions from \mathbb{R} to \mathbb{R}^{2}

Problem 3 (p. 318, \#18). Give an example of a sequence of discontinuous functions f_{k} converging uniformly to a limit function f that is continuous.
Problem 4 (p. 272, \#4). Let

$$
f_{n}(x)=\frac{1}{n} \frac{n x}{1+n x}, \quad 0 \leq x \leq 1 .
$$

Show that $f_{n} \longrightarrow 0$ in $\mathcal{C}([0,1] ; \mathbb{R})$.
Problem 5 (p. 272, \#5). Let f_{k} be a convergent sequence in $\mathcal{C}_{b}\left(A ; \mathbb{R}^{m}\right)$. Prove that $\left\{f_{k}: k=1,2, \ldots\right\}$ is bounded in $\mathcal{C}_{b}\left(A ; \mathbb{R}^{m}\right)$. Is it closed? [Hint: Don't overthink this!]

