
MATH 3150 — HOMEWORK 6

Problem 1. Let f : A ⊂ (M,d) −→ R be a uniformly continuous function. Show that f extends
uniquely to a continuous function on the closure clA, i.e., there exists a unique continuous function

f̃ : clA −→ R such that f̃ = f on A. Here are some hints:

(a) Show that if xk is a Cauchy sequence in A, then f(xk) is Cauchy (hence convergent) in R. (Is
this true if f is merely continuous in the ordinary sense?)

(b) Show that, if xk and yk are sequences in A such that limk→∞ xk = limk→∞ yk = x ∈ clA, then

lim
k→∞

f(xk) = lim
k→∞

f(yk).

(Hint: consider the sequence x1, y1, x2, y2, . . .)

(c) Use the previous two results to define an extension f̃ : clA −→ R of f , and prove that it is
continuous and unique.

Solution.

(a) Suppose xk is Cauchy in A; we want to show that f(xk) is Cauchy in R. By uniform continuity
of f , given any ε > 0, there is a δ > 0 such that

d(x, x′) < δ =⇒
∣∣f(x)− f(x′)

∣∣ < ε.

Then, since xk is Cauchy, there exists a K such that

k, l ≥ K =⇒ d(xk, xl) < δ =⇒ |f(xk)− f(xl)| < ε.

Thus f(xk) is Cauchy and, by completeness of R, convergent.
(b) Suppose xk and yk are sequences in A with the same limit x in clA. Thus for any ε > 0, there

exists K1 and K2 such that

k ≥ K1 =⇒ d(xk, x) < ε,

k ≥ K2 =⇒ d(yk, x) < ε.

It follows that the interleaved sequence zk, where z2k+1 = xk, z2k = yk, also converges to x,
since for K = 2 max(K1,K2),

k ≥ K =⇒ d(zk, x) < ε.

Applying part (a) to this sequence, we conclude that f(zk) converges to some limit l ∈ R, and
since f(xk) and f(yk) are subsequences of this sequence, they have the same limit as well.

(c) To define f̃ for x ∈ clA, let xk be a sequence in A such that xk −→ x. By part (a), f(xk)
converges, and we set

f̃(x) = lim
k→∞

f(xk).

By part (b), this is well-defined (i.e., it does not depend on the choice of sequence converging

to x). If x ∈ A to begin with, it follows by continuity of f that f(xk) −→ f(x), so f̃(x) = f(x)

and f̃ is therefore an extension of f.

To see that f̃ is (uniformly) continuous, let ε > 0 be given. We want to show that there

exists δ̃ > 0 such that

x, x′ ∈ clA, d(x, x′) < δ̃ =⇒
∣∣∣f̃(x)− f̃(x′)

∣∣∣ < ε.
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Now, since f is uniformly continuous, there exists δ > 0 such that

y, y′ ∈ A, d(y, y′) < δ =⇒
∣∣f(y)− f(y′)

∣∣ < ε
3 .

Let δ̃ = δ
2 . Then, suppose that x, x′ ∈ clA satisfy d(x, x′) < δ̃. By properties of the closure,

there exist y, y′ ∈ A such that

d(y, x) < δ
4 , d(y′, x′) < δ

4 ,

and by choosing y and y′ closer to x and x′ if necessary, we can suppose that∣∣∣f̃(x)− f(y)
∣∣∣ < ε

3 ,
∣∣∣f̃(x′)− f(y′)

∣∣∣ < ε
3 .

Using the triangle inequality twice, we see

d(y, y′) ≤ d(y, x) + d(x, x′) + d(x′, y′) < δ
4 + δ

2 + δ
4 = δ.

Then∣∣∣f̃(x)− f̃(x′)
∣∣∣ ≤ ∣∣∣f̃(x)− f(y)

∣∣∣+
∣∣f(y)− f(y′)

∣∣+
∣∣∣f(y′)− f̃(x′)

∣∣∣ < ε
3 + ε

3 + ε
3 = ε.

�

Problem 2 (p. 232, #12 (partly)). Recall that a map f : A ⊂ Rn −→ Rm is called Lipschitz on A
if there is a constant L ≥ 0 such that ‖f(x)− f(y)‖ ≤ L ‖x− y‖ for all x, y ∈ A. For the following
questions, either provide a proof (for yes) or a counterexample (for no).

(a) Is the sum of two Lipschitz functions again a Lipschitz function?
(b) Is the product of two Lipschitz functions again a Lipschitz function?
(c) Is the sum of two uniformly continuous functions uniformly continuous?
(d) Is the product of two uniformly continuous functions uniformly continuous?

Solution.

(a) Yes. Proof: Suppose f, g : A ⊂ Rn −→ Rm are both Lipschitz with constants Lf and Lg,
respectively. Then

‖(f + g)(x)− (f + g)(y)‖ = ‖f(x)− f(y) + g(x)− g(y)‖
≤ ‖f(x)− f(y)‖+ ‖g(x)− g(y)‖ ≤ Lf ‖x− y‖+ Lg ‖x− y‖ = (Lf + Lg) ‖x− y‖ .

So f + g is Lipschitz with constant L = Lf + Lg.
(b) No. Counterexample: f(x) = x is Lipschitz on all of R with constant L = 1 (obviously).

Nevertheless f(x)f(x) = x2 is not, as shown in class (we showed x2 is not uniformly continuous,
and therefore it is not Lipshitz).

If we assume in addition that f and g are both bounded, then fg is Lipschitz:

‖f(x)g(x)− f(y)g(y)‖ = ‖f(x)g(x)− f(x)g(y)‖+ ‖(f(x)g(y)− f(y)g(y)‖
≤ (‖f(x)‖Lg + ‖g(y)‖Lf ) ‖x− y‖ .

(c) Yes. Proof: Suppose f, g : A ⊂ Rn −→ Rm are uniformly continuous. Given ε > 0, there exist
δf , δg > 0 such that

‖x− y‖ < δf =⇒ ‖f(x)− f(y)‖ < ε/2

‖x− y‖ < δg =⇒ ‖g(x)− g(y)‖ < ε/2.

Let δ = min(δf , δg). Then ‖x− y‖ < δ implies

‖f(x) + g(x)− (f(y) + g(y))‖ ≤ ‖f(x)− f(y)‖+ ‖g(x)− g(y)‖

<
ε

2
+
ε

2
= ε.
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(d) No. Counterexample: f(x) = x on R. Again this is uniformly continuous (let δ = ε), but x2 is
not.

If we assume in addition that f and g are bounded, then fg is uniformly continuous. Indeed,
given ε > 0 there exist δf , δg > 0 such that

‖x− y‖ < δf =⇒ ‖f(x)− f(y)‖ < ε

2(supz∈A ‖g(z)‖+ 1)

‖x− y‖ < δg =⇒ ‖g(x)− g(y)‖ < ε

2(supz∈A ‖f(z)‖+ 1)
.

Let δ = min(δf , δg). Then ‖x− y‖ < δ implies

‖f(x)g(x)− f(y)g(y)‖ = ‖f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)‖
≤ ‖f(x)‖ ‖g(x)− g(y)‖+ ‖g(y)‖ ‖f(x)− f(y)‖

<
ε ‖f(x)‖

2(supz∈A ‖f(z)‖+ 1)
+

ε ‖g(y)‖
2(supz∈A ‖g(z)‖+ 1)

<
ε

2
+
ε

2
= ε.

�

Problem 3 (p. 235, #37). Prove the following intermediate value theorem for derivatives: If f
is differentiable at all points of [a, b] and if f ′(a) and f ′(b) are non-zero, with opposite signs, then
there is a point x0 ∈ (a, b) such that f ′(x0) = 0. (Note that we do not assume that f ′ is continuous,
just that it exists at each x ∈ [a, b].)

Solution. Since f is differentiable on [a, b], it is continuous there, and since [a, b] is compact, f
achieves its maximum and minumum values on [a, b]. Either these maximum/minmum values occur
in the interior, (a, b), in which case they are local maxima/minima, or they occur at the endpoints.
The only way for f to have no local max/min in the interior is for it to be strictly increasing or
decreasing, but the assumption that f ′(a) and f ′(b) are nonzero with opposite signs rules this out.
Thus there exists at least one local max or min at some x0 ∈ (a, b). Finally, we recall that if f has
a local maximum or minimum at x0, then necessarily f ′(x0) = 0. �

Problem 4 (p. 235, #38). A real-valued function defined on (a, b) is called convex when the
following inequality holds for all x, y ∈ (a, b) and t ∈ [0, 1] :

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

(In other words, the graph of f between x and y lies on or below the straight line connecting f(x)
and f(y).) If f has a continuous second derivative and f ′′ > 0, show that f is convex.

[Hint: Fix x < y and show that the function g(t) = f(tx+ (1− t)y)− tf(x)− (1− t)f(y) satisfies
g(t) ≤ 0 for all t ∈ [0, 1].]

Solution. Fix x and y in (a, b) with x < y and consider the function g : [0, 1] −→ R defined by

g(t) = f(tx+ (1− t)y)− tf(x)− (1− t)f(y).

We want to show that g(t) ≤ 0 for all t ∈ [0, 1]. Now g is twice differentiable on (0, 1), with

g′′(t) = f ′′(tx+ (1− t)y)(x− y)2.

Since x < y and f ′′ > 0 by assumption, it follows that g′′ > 0 for all t ∈ (0, 1).
Continuity of f on [x, y] implies continuity of g on [0, 1], so g must attain its maximum and

minimum values there, but since g′′ > 0, any local extrema in (0, 1) must be minima. It follows
that the maxima of g occur at t = 0 and/or t = 1. But we note that

g(0) = g(1) = 0
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so therefore g(t) ≤ 0 for all t ∈ [0, 1]. �

Problem 5 (p. 336, #44). Let f : [0, 1] −→ R be Riemann integrable and suppose that for every

a, b with 0 ≤ a < b ≤ 1 there exists a c with a < c < b with f(c) = 0. Prove that
∫ 1
0 f dx = 0. Must

f be zero? What if f is continuous?

Solution. By the assumption that f is Riemann integrable,∫ 1

0
f(x) dx = sup

P
{L(f, [0, 1], P )} = inf

P
{U(f, [0, 1], P )}

exists, so for every ε > 0 there exist partitions P0 and P1 of [0, 1] such that

U(f, [0, 1], P0) <

∫ 1

0
f(x) dx− ε, and L(f, [0, 1], P1) >

∫ 1

0
f(x) dx+ ε.

Passing to the common refinement P = P0 ∪P1 if necessary (which only decreases U and increases
L), we may assume that P = P0 = P1..

On each interval [xi−1, xi] of P , there exists a point c where f(c) = 0, so it must be that

sup
[xi−1,xi]

f(x) ≥ 0, and inf
[xi−1,xi]

f(x) ≤ 0,

and putting these estimates into the upper and lower sums gives

U(f, [0, 1], P ) ≥ 0, L(f, [0, 1], P ) ≤ 0.

Thus we have shown that for every ε > 0, there exists a P such that

0 ≤ U(f, [0, 1], P ) <

∫ 1

0
f(x) dx− ε, and

0 ≥ L(f, [0, 1], P ) >

∫ 1

0
f(x) dx+ ε.

which implies that
∫ 1
0 f(x) dx = 0.

f need not vanish identically, as the example

f(x) =

{
1 x = 0

0 0 < x ≤ 1

shows. However if f is assumed to be continuous in addition, then we must have f(x) = 0 for all
x. �
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