MATH 3150 - HOMEWORK 6

Problem 1. Let $f: A \subset(M, d) \longrightarrow \mathbb{R}$ be a uniformly continuous function. Show that f extends uniquely to a continuous function on the closure $\mathrm{cl} A$, i.e., there exists a unique continuous function $\widetilde{f}: \operatorname{cl} A \longrightarrow \mathbb{R}$ such that $\tilde{f}=f$ on A. Here are some hints:
(a) Show that if x_{k} is a Cauchy sequence in A, then $f\left(x_{k}\right)$ is Cauchy (hence convergent) in \mathbb{R}. (Is this true if f is merely continuous in the ordinary sense?)
(b) Show that, if x_{k} and y_{k} are sequences in A such that $\lim _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} y_{k}=x \in \mathrm{cl} A$, then

$$
\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty} f\left(y_{k}\right) .
$$

(Hint: consider the sequence $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$)
(c) Use the previous two results to define an extension $\widetilde{f}: \operatorname{cl} A \longrightarrow \mathbb{R}$ of f, and prove that it is continuous and unique.

Solution.

(a) Suppose x_{k} is Cauchy in A; we want to show that $f\left(x_{k}\right)$ is Cauchy in \mathbb{R}. By uniform continuity of f, given any $\varepsilon>0$, there is a $\delta>0$ such that

$$
d\left(x, x^{\prime}\right)<\delta \Longrightarrow\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon .
$$

Then, since x_{k} is Cauchy, there exists a K such that

$$
k, l \geq K \Longrightarrow d\left(x_{k}, x_{l}\right)<\delta \Longrightarrow\left|f\left(x_{k}\right)-f\left(x_{l}\right)\right|<\varepsilon .
$$

Thus $f\left(x_{k}\right)$ is Cauchy and, by completeness of \mathbb{R}, convergent.
(b) Suppose x_{k} and y_{k} are sequences in A with the same limit x in $\operatorname{cl} A$. Thus for any $\varepsilon>0$, there exists K_{1} and K_{2} such that

$$
\begin{aligned}
& k \geq K_{1} \Longrightarrow d\left(x_{k}, x\right)<\varepsilon, \\
& k \geq K_{2} \Longrightarrow d\left(y_{k}, x\right)<\varepsilon .
\end{aligned}
$$

It follows that the interleaved sequence z_{k}, where $z_{2 k+1}=x_{k}, z_{2 k}=y_{k}$, also converges to x, since for $K=2 \max \left(K_{1}, K_{2}\right)$,

$$
k \geq K \Longrightarrow d\left(z_{k}, x\right)<\varepsilon
$$

Applying part (a) to this sequence, we conclude that $f\left(z_{k}\right)$ converges to some limit $l \in \mathbb{R}$, and since $f\left(x_{k}\right)$ and $f\left(y_{k}\right)$ are subsequences of this sequence, they have the same limit as well.
(c) To define \widetilde{f} for $x \in \operatorname{cl} A$, let x_{k} be a sequence in A such that $x_{k} \longrightarrow x$. By part (a), $f\left(x_{k}\right)$ converges, and we set

$$
\widetilde{f}(x)=\lim _{k \rightarrow \infty} f\left(x_{k}\right) .
$$

By part (b), this is well-defined (i.e., it does not depend on the choice of sequence converging to x). If $x \in A$ to begin with, it follows by continuity of f that $f\left(x_{k}\right) \longrightarrow f(x)$, so $\tilde{f}(x)=f(x)$ and \tilde{f} is therefore an extension of f.

To see that \tilde{f} is (uniformly) continuous, let $\varepsilon>0$ be given. We want to show that there exists $\widetilde{\delta}>0$ such that

$$
x, x^{\prime} \in \operatorname{cl} A, \quad d\left(x, x^{\prime}\right)<\widetilde{\delta} \Longrightarrow\left|\widetilde{f}(x)-\widetilde{f}\left(x^{\prime}\right)\right|<\varepsilon
$$

Now, since f is uniformly continuous, there exists $\delta>0$ such that

$$
y, y^{\prime} \in A, \quad d\left(y, y^{\prime}\right)<\delta \Longrightarrow\left|f(y)-f\left(y^{\prime}\right)\right|<\frac{\varepsilon}{3} .
$$

Let $\widetilde{\delta}=\frac{\delta}{2}$. Then, suppose that $x, x^{\prime} \in \operatorname{cl} A$ satisfy $d\left(x, x^{\prime}\right)<\widetilde{\delta}$. By properties of the closure, there exist $y, y^{\prime} \in A$ such that

$$
d(y, x)<\frac{\delta}{4}, \quad d\left(y^{\prime}, x^{\prime}\right)<\frac{\delta}{4},
$$

and by choosing y and y^{\prime} closer to x and x^{\prime} if necessary, we can suppose that

$$
|\widetilde{f}(x)-f(y)|<\frac{\varepsilon}{3}, \quad\left|\widetilde{f}\left(x^{\prime}\right)-f\left(y^{\prime}\right)\right|<\frac{\varepsilon}{3} .
$$

Using the triangle inequality twice, we see

$$
d\left(y, y^{\prime}\right) \leq d(y, x)+d\left(x, x^{\prime}\right)+d\left(x^{\prime}, y^{\prime}\right)<\frac{\delta}{4}+\frac{\delta}{2}+\frac{\delta}{4}=\delta .
$$

Then

$$
\left|\widetilde{f}(x)-\widetilde{f}\left(x^{\prime}\right)\right| \leq|\widetilde{f}(x)-f(y)|+\left|f(y)-f\left(y^{\prime}\right)\right|+\left|f\left(y^{\prime}\right)-\widetilde{f}\left(x^{\prime}\right)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
$$

Problem 2 (p. 232, \#12 (partly)). Recall that a map $f: A \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is called Lipschitz on A if there is a constant $L \geq 0$ such that $\|f(x)-f(y)\| \leq L\|x-y\|$ for all $x, y \in A$. For the following questions, either provide a proof (for yes) or a counterexample (for no).
(a) Is the sum of two Lipschitz functions again a Lipschitz function?
(b) Is the product of two Lipschitz functions again a Lipschitz function?
(c) Is the sum of two uniformly continuous functions uniformly continuous?
(d) Is the product of two uniformly continuous functions uniformly continuous?

Solution.

(a) Yes. Proof: Suppose $f, g: A \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ are both Lipschitz with constants L_{f} and L_{g}, respectively. Then

$$
\begin{aligned}
\|(f+g)(x) & -(f+g)(y)\|=\| f(x)-f(y)+g(x)-g(y) \| \\
& \leq\|f(x)-f(y)\|+\|g(x)-g(y)\| \leq L_{f}\|x-y\|+L_{g}\|x-y\|=\left(L_{f}+L_{g}\right)\|x-y\| .
\end{aligned}
$$

So $f+g$ is Lipschitz with constant $L=L_{f}+L_{g}$.
(b) No. Counterexample: $f(x)=x$ is Lipschitz on all of \mathbb{R} with constant $L=1$ (obviously). Nevertheless $f(x) f(x)=x^{2}$ is not, as shown in class (we showed x^{2} is not uniformly continuous, and therefore it is not Lipshitz).

If we assume in addition that f and g are both bounded, then $f g$ is Lipschitz:

$$
\begin{aligned}
& \|f(x) g(x)-f(y) g(y)\|=\|f(x) g(x)-f(x) g(y)\|+\|(f(x) g(y)-f(y) g(y) \| \\
& \leq\left(\|f(x)\| L_{g}+\|g(y)\| L_{f}\right)\|x-y\| .
\end{aligned}
$$

(c) Yes. Proof: Suppose $f, g: A \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ are uniformly continuous. Given $\varepsilon>0$, there exist $\delta_{f}, \delta_{g}>0$ such that

$$
\begin{aligned}
& \|x-y\|<\delta_{f} \Longrightarrow\|f(x)-f(y)\|<\varepsilon / 2 \\
& \|x-y\|<\delta_{g} \Longrightarrow\|g(x)-g(y)\|<\varepsilon / 2 .
\end{aligned}
$$

Let $\delta=\min \left(\delta_{f}, \delta_{g}\right)$. Then $\|x-y\|<\delta$ implies

$$
\begin{aligned}
\|f(x)+g(x)-(f(y)+g(y))\| & \leq\|f(x)-f(y)\|+\|g(x)-g(y)\| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . \\
& 2
\end{aligned}
$$

(d) No. Counterexample: $f(x)=x$ on \mathbb{R}. Again this is uniformly continuous (let $\delta=\varepsilon$), but x^{2} is not.

If we assume in addition that f and g are bounded, then $f g$ is uniformly continuous. Indeed, given $\varepsilon>0$ there exist $\delta_{f}, \delta_{g}>0$ such that

$$
\begin{aligned}
\|x-y\|<\delta_{f} & \Longrightarrow\|f(x)-f(y)\|<\frac{\varepsilon}{2\left(\sup _{z \in A}\|g(z)\|+1\right)} \\
\|x-y\|<\delta_{g} & \Longrightarrow\|g(x)-g(y)\|<\frac{\varepsilon}{2\left(\sup _{z \in A}\|f(z)\|+1\right)}
\end{aligned}
$$

Let $\delta=\min \left(\delta_{f}, \delta_{g}\right)$. Then $\|x-y\|<\delta$ implies

$$
\begin{aligned}
\|f(x) g(x)-f(y) g(y)\| & =\|f(x) g(x)-f(x) g(y)+f(x) g(y)-f(y) g(y)\| \\
& \leq\|f(x)\|\|g(x)-g(y)\|+\|g(y)\|\|f(x)-f(y)\| \\
& <\frac{\varepsilon\|f(x)\|}{2\left(\sup _{z \in A}\|f(z)\|+1\right)}+\frac{\varepsilon\|g(y)\|}{2\left(\sup _{z \in A}\|g(z)\|+1\right)} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Problem 3 (p. 235, \#37). Prove the following intermediate value theorem for derivatives: If f is differentiable at all points of $[a, b]$ and if $f^{\prime}(a)$ and $f^{\prime}(b)$ are non-zero, with opposite signs, then there is a point $x_{0} \in(a, b)$ such that $f^{\prime}\left(x_{0}\right)=0$. (Note that we do not assume that f^{\prime} is continuous, just that it exists at each $x \in[a, b]$.)

Solution. Since f is differentiable on $[a, b]$, it is continuous there, and since $[a, b]$ is compact, f achieves its maximum and minumum values on $[a, b]$. Either these maximum/minmum values occur in the interior, (a, b), in which case they are local maxima/minima, or they occur at the endpoints. The only way for f to have no local max/min in the interior is for it to be strictly increasing or decreasing, but the assumption that $f^{\prime}(a)$ and $f^{\prime}(b)$ are nonzero with opposite signs rules this out. Thus there exists at least one local max or min at some $x_{0} \in(a, b)$. Finally, we recall that if f has a local maximum or minimum at x_{0}, then necessarily $f^{\prime}\left(x_{0}\right)=0$.
Problem 4 (p. 235, \#38). A real-valued function defined on (a, b) is called convex when the following inequality holds for all $x, y \in(a, b)$ and $t \in[0,1]$:

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

(In other words, the graph of f between x and y lies on or below the straight line connecting $f(x)$ and $f(y)$.) If f has a continuous second derivative and $f^{\prime \prime}>0$, show that f is convex.
[Hint: Fix $x<y$ and show that the function $g(t)=f(t x+(1-t) y)-t f(x)-(1-t) f(y)$ satisfies $g(t) \leq 0$ for all $t \in[0,1]$.]
Solution. Fix x and y in (a, b) with $x<y$ and consider the function $g:[0,1] \longrightarrow \mathbb{R}$ defined by

$$
g(t)=f(t x+(1-t) y)-t f(x)-(1-t) f(y) .
$$

We want to show that $g(t) \leq 0$ for all $t \in[0,1]$. Now g is twice differentiable on $(0,1)$, with

$$
g^{\prime \prime}(t)=f^{\prime \prime}(t x+(1-t) y)(x-y)^{2} .
$$

Since $x<y$ and $f^{\prime \prime}>0$ by assumption, it follows that $g^{\prime \prime}>0$ for all $t \in(0,1)$.
Continuity of f on $[x, y]$ implies continuity of g on $[0,1]$, so g must attain its maximum and minimum values there, but since $g^{\prime \prime}>0$, any local extrema in $(0,1)$ must be minima. It follows that the maxima of g occur at $t=0$ and/or $t=1$. But we note that

$$
g(0)=\underset{3}{g}(1)=0
$$

so therefore $g(t) \leq 0$ for all $t \in[0,1]$.
Problem 5 (p. 336, \#44). Let $f:[0,1] \longrightarrow \mathbb{R}$ be Riemann integrable and suppose that for every a, b with $0 \leq a<b \leq 1$ there exists a c with $a<c<b$ with $f(c)=0$. Prove that $\int_{0}^{1} f d x=0$. Must f be zero? What if f is continuous?

Solution. By the assumption that f is Riemann integrable,

$$
\int_{0}^{1} f(x) d x=\sup _{P}\{L(f,[0,1], P)\}=\inf _{P}\{U(f,[0,1], P)\}
$$

exists, so for every $\varepsilon>0$ there exist partitions P_{0} and P_{1} of $[0,1]$ such that

$$
U\left(f,[0,1], P_{0}\right)<\int_{0}^{1} f(x) d x-\varepsilon, \quad \text { and } \quad L\left(f,[0,1], P_{1}\right)>\int_{0}^{1} f(x) d x+\varepsilon .
$$

Passing to the common refinement $P=P_{0} \cup P_{1}$ if necessary (which only decreases U and increases L), we may assume that $P=P_{0}=P_{1}$..

On each interval $\left[x_{i-1}, x_{i}\right]$ of P, there exists a point c where $f(c)=0$, so it must be that

$$
\sup _{\left[x_{i-1}, x_{i}\right]} f(x) \geq 0, \quad \text { and } \quad \inf _{\left[x_{i-1}, x_{i}\right]} f(x) \leq 0,
$$

and putting these estimates into the upper and lower sums gives

$$
U(f,[0,1], P) \geq 0, \quad L(f,[0,1], P) \leq 0 .
$$

Thus we have shown that for every $\varepsilon>0$, there exists a P such that

$$
\begin{aligned}
& 0 \leq U(f,[0,1], P)<\int_{0}^{1} f(x) d x-\varepsilon, \quad \text { and } \\
& 0 \geq L(f,[0,1], P)>\int_{0}^{1} f(x) d x+\varepsilon
\end{aligned}
$$

which implies that $\int_{0}^{1} f(x) d x=0$.
f need not vanish identically, as the example

$$
f(x)= \begin{cases}1 & x=0 \\ 0 & 0<x \leq 1\end{cases}
$$

shows. However if f is assumed to be continuous in addition, then we must have $f(x)=0$ for all x.

