MATH 3150 — HOMEWORK 6

Problem 1. Let f: A C (M,d) — R be a uniformly continuous function. Show that f extends

uniquely to a continuous function on the closure cl A, i.e., there exists a unique continuous function

f:clA— R such that f = f on A. Here are some hints:

(a) Show that if zj is a Cauchy sequence in A, then f(xj) is Cauchy (hence convergent) in R. (Is
this true if f is merely continuous in the ordinary sense?)

(b) Show that, if z; and yj, are sequences in A such that limy_,o 2 = limg_,00 Yy = = € cl A, then

lim f(z) = lim f(yk).
k—o00 k—o00
(Hint: consider the sequence x1,y1, 2, Y2, - -)

(c) Use the previous two results to define an extension j?: clA — R of f, and prove that it is
continuous and unique.

Solution.

(a) Suppose xj, is Cauchy in A; we want to show that f(z) is Cauchy in R. By uniform continuity
of f, given any € > 0, there is a § > 0 such that

d(z,2") <6 = |f(z) - f(2)] <e.
Then, since x; is Cauchy, there exists a K such that
k> K = d(wg,x) <6 = [f(zp) = f@)] <e.

Thus f(z) is Cauchy and, by completeness of R, convergent.
(b) Suppose zj and y;, are sequences in A with the same limit x in ¢l A. Thus for any € > 0, there
exists K7 and K5 such that

k>K — d(xk,x) <g,
k> Ky, = d(yk,z) <e.

It follows that the interleaved sequence zj, where 2011 = xk, 2ok = Yk, also converges to x,
since for K = 2max(K, K2),

k>K = d(z,z) <e.

Applying part (a) to this sequence, we conclude that f(zx) converges to some limit [ € R, and
since f(zy) and f(yg) are subsequences of this sequence, they have the same limit as well.

(c) To define f for x € cl A, let x; be a sequence in A such that x; — =. By part (a), f(zk)
converges, and we set

flw) = Jim f(zg).

By part (b), this is well-defined (i.e., it does not depend on the choice of sequence converging
to z). If z € A to begin with, it follows by continuity of f that f(z) — f(z), so f(z) = f(z)
and fis therefore an extension of f.

To see that fvis (uniformly) continuous, let ¢ > 0 be given. We want to show that there

exists 0 > 0 such that

v, ' €clA, d(z,7)<d = |f(z)— f(2')| <e.



Now, since f is uniformly continuous, there exists § > 0 such that
vy €A, dy,y)<é = |fly) - )] <5

Let § = %. Then, suppose that z, 2’ € cl A satisfy d(z,2') < 5. By properties of the closure,
there exist y,4’ € A such that

d(y,x) < %’ d(ylaxl) < g,
and by choosing y and ¢/ closer to x and 2’ if necessary, we can suppose that
F@) - 1) <5 [F@) - 1)
Using the triangle inequality twice, we see

d(y,y) < d(y,z) + d(z,a') + d(@',y/) < S+ 5+ 2 =

€
< 3.

Then

< |F@) = £+ 1£w) = F6)| + | £6) - )

<s+§5+5=e
]
Problem 2 (p. 232, #12 (partly)). Recall that a map f: A C R — R™ is called Lipschitz on A

if there is a constant L > 0 such that || f(z) — f(y)| < L ||z — y|| for all z,y € A. For the following
questions, either provide a proof (for yes) or a counterexample (for no).

a) Is the sum of two Lipschitz functions again a Lipschitz function?

b) Is the product of two Lipschitz functions again a Lipschitz function?

¢) Is the sum of two uniformly continuous functions uniformly continuous?

d) Is the product of two uniformly continuous functions uniformly continuous?
p

Solution.

(a) Yes. Proof: Suppose f,g : A C R® — R™ are both Lipschitz with constants Ly and Ly,
respectively. Then

I+ 9)(@) = (F +9) W)l = I/ (=) = F(y) + 9(z) = g(¥)]
<f (@) = Fl +llg(z) =9l < Ly llz =yl + Ly |z = yll = (Ly + Lg) |z — yll -
So f + g is Lipschitz with constant L = Ly + L.
(b) No. Counterexample: f(z) = z is Lipschitz on all of R with constant L = 1 (obviously).

Nevertheless f(z)f(x) = 22 is not, as shown in class (we showed z? is not uniformly continuous,
and therefore it is not Lipshitz).

If we assume in addition that f and g are both bounded, then fg is Lipschitz:

1f(@)g(z) — fF(W)gW)ll = | f(x)g(x) — f(@)g(y)| + [|(f(x)g(y) — f(y)gW)ll

< (If @) Lg + g Lp) [l = yll -

(¢) Yes. Proof: Suppose f,g: A C R" — R™ are uniformly continuous. Given € > 0, there exist
dr,04 > 0 such that

[z =yl <o = [If(z) = Fy)ll <e/2
[z =yl <99 = llg(x) = g(y)ll <e/2.
Let 6 = min(ds,dy). Then ||z — y|| < implies
1f (@) +g(z) = () + 9@l < [1f(x) = fFW)ll + llg(z) = g(W)
<+

9 =¢&.
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(d) No. Counterexample: f(z) = x on R. Again this is uniformly continuous (let § = ¢), but 22 is
not.
If we assume in addition that f and g are bounded, then fg is uniformly continuous. Indeed,
given € > 0 there exist d7,d, > 0 such that

lz —yll < & = |If(z) = W) < -

2(supzea llg(z)[ + 1)
9

2(sup.ea [lf(2)Il + 1)

lz =yl <dg = llg(z) = g(y)ll <

Let 0 = min(dy, dy). Then ||z — y|| < 0 implies
1f(@)g(x) — f(W)g)ll = If(x)g(z) — f(z)g(y) + f(x)g(y) — [(»)g ()]l
< [[f@) llg(x) — gl + llg)ll [ f(z) = fW)
e |lf (@) n ellg(y)ll
2(sup.eq [[f(2)[ +1)  2(sup.eq llg(2)]| + 1)

<€+€—5
2 2 7

0

Problem 3 (p. 235, #37). Prove the following intermediate value theorem for derivatives: If f
is differentiable at all points of [a,b] and if f'(a) and f/(b) are non-zero, with opposite signs, then
there is a point z¢ € (a,b) such that f'(z¢) = 0. (Note that we do not assume that f’ is continuous,
just that it exists at each = € [a, b].)

Solution. Since f is differentiable on [a,b], it is continuous there, and since [a,b] is compact, f
achieves its maximum and minumum values on [a, b]. Either these maximum/minmum values occur
in the interior, (a,b), in which case they are local maxima/minima, or they occur at the endpoints.
The only way for f to have no local max/min in the interior is for it to be strictly increasing or
decreasing, but the assumption that f/'(a) and f’(b) are nonzero with opposite signs rules this out.
Thus there exists at least one local max or min at some zg € (a,b). Finally, we recall that if f has
a local maximum or minimum at x, then necessarily f’(z) = 0. O

Problem 4 (p. 235, #38). A real-valued function defined on (a,b) is called convexr when the
following inequality holds for all z,y € (a,b) and t € [0,1] :

fltz+ (1 —=t)y) <tf(z) + (1 —t)f(y).
(In other words, the graph of f between x and y lies on or below the straight line connecting f(x)
and f(y).) If f has a continuous second derivative and f” > 0, show that f is convex.

[Hint: Fix z < y and show that the function g(t) = f(tx + (1 —t)y) —tf(x) — (1 —t) f(y) satisfies
g(t) <0 for all t € [0,1].]

Solution. Fix x and y in (a,b) with x < y and consider the function g : [0,1] — R defined by

g(t) = f{tx + (1 = t)y) —tf(z) = (1 =) f(y).
We want to show that g(t) < 0 for all ¢t € [0, 1]. Now g is twice differentiable on (0, 1), with

g'(t) = [t + (1 - thy)(z — y)*.
Since z < y and f” > 0 by assumption, it follows that g” > 0 for all ¢ € (0, 1).
Continuity of f on [z,y] implies continuity of g on [0, 1], so g must attain its maximum and
minimum values there, but since ¢” > 0, any local extrema in (0,1) must be minima. It follows
that the maxima of g occur at t = 0 and/or t = 1. But we note that

g(0)=g(1)=0
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so therefore g(t) < 0 for all ¢ € [0, 1]. O

Problem 5 (p. 336, #44). Let f :[0,1] — R be Riemann integrable and suppose that for every

a,b with 0 < a < b <1 there exists a ¢ with a < ¢ < b with f(¢) = 0. Prove that f01 fdx = 0. Must
f be zero? What if f is continuous?

Solution. By the assumption that f is Riemann integrable,

1
| @) do = sup (2£.00.1),P)) = inf (U7, 0,1, P)}
0 P

exists, so for every € > 0 there exist partitions Py and P; of [0, 1] such that

1 1
U(f,[O,l],P0)</O f@)de—e, and L(f,[O,l],P1)>/O F@) do + <.

Passing to the common refinement P = Py U P if necessary (which only decreases U and increases
L), we may assume that P = Py = P..
On each interval [z;_1,x;] of P, there exists a point ¢ where f(c) = 0, so it must be that

sup f(x) >0, and inf  f(z) <0

[Ti—1,74] Ti—1,2i]
and putting these estimates into the upper and lower sums gives
U(f,[0,1,P) =0, L(f[0,1],P) <0.

Thus we have shown that for every € > 0, there exists a P such that

0<U(f,[0,1],P /f )dxr —e, and

0> L(f, /f Ydx + €.

which implies that f() x)dxr = 0.
f need not vanish 1dentlcally, as the example

1 z=0
f(x):{o O<z<1

shows. However if f is assumed to be continuous in addition, then we must have f(z) = 0 for all
T. 0



