MATH 3150 - HOMEWORK 6

Problem 1. Let $f: A \subset(M, d) \longrightarrow \mathbb{R}$ be a uniformly continuous function. Show that f extends ${\underset{\sim}{f}}^{\text {uniquely }}$ to a continuous function on the closure $\mathrm{cl} A$, i.e., there exists a unique continuous function $\tilde{f}: \operatorname{cl} A \longrightarrow \mathbb{R}$ such that $\tilde{f}=f$ on A. Here are some hints:
(a) Show that if x_{k} is a Cauchy sequence in A, then $f\left(x_{k}\right)$ is Cauchy (hence convergent) in \mathbb{R}. (Is this true if f is merely continuous in the ordinary sense?)
(b) Show that, if x_{k} and y_{k} are sequences in A such that $\lim _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} y_{k}=x \in \mathrm{cl} A$, then

$$
\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty} f\left(y_{k}\right) .
$$

(Hint: consider the sequence $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$)
(c) Use the previous two results to define an extension $\widetilde{f}: \operatorname{cl} A \longrightarrow \mathbb{R}$ of f, and prove that it is continuous and unique.
Problem 2 (p. 232, \#12 (partly)). Recall that a map $f: A \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is called Lipschitz on A if there is a constant $L \geq 0$ such that $\|f(x)-f(y)\| \leq L\|x-y\|$ for all $x, y \in A$. For the following questions, either provide a proof (for yes) or a counterexample (for no).
(a) Is the sum of two Lipschitz functions again a Lipschitz function?
(b) Is the product of two Lipschitz functions again a Lipschitz function?
(c) Is the sum of two uniformly continuous functions uniformly continuous?
(d) Is the product of two uniformly continuous functions uniformly continuous?

Problem 3 (p. 235, \#37). Prove the following intermediate value theorem for derivatives: If f is differentiable at all points of $[a, b]$ and if $f^{\prime}(a)$ and $f^{\prime}(b)$ are non-zero, with opposite signs, then there is a point $x_{0} \in(a, b)$ such that $f^{\prime}\left(x_{0}\right)=0$. (Note that we do not assume that f^{\prime} is continuous, just that it exists at each $x \in[a, b]$.)
Problem 4 (p. 235, \#38). A real-valued function defined on (a, b) is called convex when the following inequality holds for all $x, y \in(a, b)$ and $t \in[0,1]$:

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) .
$$

If f has a continuous second derivative and $f^{\prime \prime}>0$, show that f is convex.
[Hint: Fix $x<y$ and show that the function $g(t)=f(t x+(1-t) y)-t f(x)--(1-t) f(y)$ satisfies $g(t) \leq 0$ for all $t \in[0,1]$.]
Problem 5 (p. 336, \#44). Let $f:[0,1] \longrightarrow \mathbb{R}$ be Riemann integrable and suppose that for every a, b with $0 \leq a<b \leq 1$ there exists a c with $a<c<b$ with $f(c)=0$. Prove that $\int_{0}^{1} f d x=0$. Must f be zero? What if f is continuous?

