Problem 1 (p. 172, #1). Which of the following sets are connected? Which are compact?

- (a) $\{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| \le 1\}$
- (b) $\{x \in \mathbb{R}^n \mid ||x|| \le 10\}$
- (c) $\{x \in \mathbb{R}^n \mid 1 \le ||x|| \le 2\}$
- (d) $\mathbb{Z} = \{ \text{integers in } \mathbb{R} \}$
- (e) a finite set in \mathbb{R}
- (f) $\{x \in \mathbb{R}^n \mid ||x|| = 1\}$ (Be careful with the case n = 1!)
- (g) Boundary of the unit square in \mathbb{R}^2
- (h) The boundary of a bounded set in \mathbb{R}
- (i) The rationals in [0, 1]
- (j) A closed set in [0, 1]

Solution.

- (a) Connected, noncompact.
- (b) Connected, compact.
- (c) Compact. Connected if $n \ge 2$, not connected if n = 1.
- (d) Not connected, not compact.
- (e) Connected if just one point, otherwise not connected. Is compact.
- (f) Compact. Connected if $n \ge 2$, not connected if n = 1, where the set is $\{\pm 1\} \subset \mathbb{R}$.
- (g) Connected, compact.
- (h) Always compact (the boundary of a set A is always closed, being the intersection of closed sets cl(A) and $cl(\mathbb{R} \setminus A)$, and is bounded if the set is bounded). May or may not be connected: for example $bd([0,1]) = \{0,1\}$ is not connected, while $bd(\{0\}) = \{0\}$ is connected.
- (i) Neither connected nor compact.
- (j) Compact; may or may not be connected.

Problem 2 (p. 191, #4). Let $f : A \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ be continuous, $x, y \in A$ and $c : [0, 1] \longrightarrow A \subset \mathbb{R}^n$ be a continuous curve joining x and y. Show that along this curve, f attains its maximum and minimum values (among all values along the curve).

Solution. Since composition of continuous functions is continuous, $f \circ c : [0,1] \longrightarrow \mathbb{R}$ is continuous. The domain [0,1] is compact, so $f \circ c$ attains its maximum and minimum values (owing to compactness of $(f \circ c)([0,1])$). This is the same as the statement to be shown.

Problem 3 (p. 193, #3). Let $f : [0,1] \longrightarrow [0,1]$ be continuous. Prove that f has a fixed point (i.e. a point $x \in [0,1]$ such that f(x) = x).

Solution. Since f is continuous, g(x) = f(x) - x is continuous. A fixed point is the same thing as a point $x_0 \in [0, 1]$ where $g(x_0) = 0$.

Suppose there are no fixed points. Since g([0,1]) is connected, it must be that either g(x) > 0 for all $x \in [0,1]$ or g(x) < 0 for all $x \in [0,1]$. If g(x) > 0, then f(x) > x for all $x \in [0,1]$, but then f(1) > 1 which contradicts the assumption on the range of f: that $f: [0,1] \longrightarrow [0,1]$. On the other hand, if g(x) < 0, then f(x) < x for all $x \in [0,1]$, but then f(0) < 0 which also contradicts the assumption on the range. Thus there must be some x such that g(x) = 0, or equivalently f(x) = x.

Alternatively, we can note that $g(0) = f(0) \in [0,1]$ and $g(1) = f(1) - 1 \in [-1,0]$, and by the intermediate value theorem, for any $c \in [g(1), g(0)]$, there exists x_0 such that $g(x_0) = c$. In particular, c = 0 always lies in [g(1), g(0)], so there exists a fixed point.

Problem 4 (p. 174, #21).

- (a) Prove that a set $A \subset (M, d)$ is connected if and only if \emptyset and A are the only subsets of A that are open and closed relative to A. (A set $U \subset A$ is called *open relative to* A if $U = V \cap A$ for some open set $V \subset M$; 'closed relative to A' is defined similarly.)
- (b) Prove that \emptyset and \mathbb{R}^n are the only subsets of \mathbb{R}^n that are both open and closed.

Proof.

- (a) A is not connected if and only if there exist separating open sets $U, V \subset M$ such that
 - (1) $A = (A \cap U) \cup (A \cap V),$
 - (2) $A \cap U \neq \emptyset$,
 - (3) $A \cap V \neq \emptyset$,
 - (4) $(A \cap U) \cap (A \cap V) = \emptyset$.

Equivalently, $U' = A \cap U$ and $V' = A \cap V$ are nonempty, relatively open sets such that $U' = A \setminus V'$ and $V' = A \setminus U'$; in turn, this holds if and only if U' is a nonempty open set in A which is not all of A and which is both open and closed. Since all the implications are if and only if, the proof is complete.

(b) \mathbb{R}^n is path-connected, since any points $x, y \in \mathbb{R}^n$ are connected by the path c(t) = (1-t)x + ty, hence is is connected. By part (a), it follows that the only subsets if it which are open and closed are \emptyset and \mathbb{R}^n .

Problem 5. Let (M_1, d_1) and (M_2, d_2) be metric spaces with compact sets $K_1 \subset M_1$ and $K_2 \subset M_2$. Show that $K_1 \times K_2$ is a compact subset of the space $(M_1 \times M_2, d = d_1 + d_2)$. (The metric d on the product $M_1 \times M_2$ is defined by $d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$.)

Solution. By Bolzano-Weierstrass, we may replace 'compact' by 'sequentially compact'. Let (x_n, y_n) be a sequence in $K_1 \times K_2$. We are done if we show that it has a subsequence which converges in $K_1 \times K_2$.

Since K_1 is sequentially compact, there is a subsequence $x_{n(k)}$ which converges in K_1 :

$$x_{n(k)} \stackrel{k \to \infty}{\longrightarrow} x \in K_1.$$

Then consider the sequence $y_{n(k)}$, $k \in \mathbb{N}$, in K_2 . Since K_2 is sequentially compact, this has a further subsequence $y_{n(k(l))}$, $l \in \mathbb{N}$ which converges in K_2 :

$$y_{n(k(l))} \xrightarrow{l \to \infty} y \in K_1.$$

The subsequence $x_{n(k(l))}$ of $x_{n(k)}$ also converges to x (since a subsequence of a convergent sequence always converges to the same limit), thus

$$(x_{n(k(l))}, y_{n(k(l))}) \longrightarrow (x, y) \in K_1 \times K_2$$

is a convergent subsequence of the original.