MATH 3150 - HOMEWORK 5

Problem 1 (p. 172, \#1). Which of the following sets are connected? Which are compact?
(a) $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}| | x_{1} \mid \leq 1\right\}$
(b) $\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 10\right\}$
(c) $\left\{x \in \mathbb{R}^{n} \mid 1 \leq\|x\| \leq 2\right\}$
(d) $\mathbb{Z}=\{$ integers in $\mathbb{R}\}$
(e) a finite set in \mathbb{R}
(f) $\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}$ (Be careful with the case $n=1$!)
(g) Boundary of the unit square in \mathbb{R}^{2}
(h) The boundary of a bounded set in \mathbb{R}
(i) The rationals in $[0,1]$
(j) A closed set in $[0,1]$

Solution.

(a) Connected, noncompact.
(b) Connected, compact.
(c) Compact. Connected if $n \geq 2$, not connected if $n=1$.
(d) Not connected, not compact.
(e) Connected if just one point, otherwise not connected. Is compact.
(f) Compact. Connected if $n \geq 2$, not connected if $n=1$, where the set is $\{ \pm 1\} \subset \mathbb{R}$.
(g) Connected, compact.
(h) Always compact (the boundary of a set A is always closed, being the intersection of closed sets $\operatorname{cl}(A)$ and $\operatorname{cl}(\mathbb{R} \backslash A)$, and is bounded if the set is bounded). May or may not be connected: for example $\operatorname{bd}([0,1])=\{0,1\}$ is not connected, while $\operatorname{bd}(\{0\})=\{0\}$ is connected.
(i) Neither connected nor compact.
(j) Compact; may or may not be connected.

Problem 2 (p. 191, \#4). Let $f: A \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be continuous, $x, y \in A$ and $c:[0,1] \longrightarrow A \subset \mathbb{R}^{n}$ be a continuous curve joining x and y. Show that along this curve, f attains its maximum and minimum values (among all values along the curve).

Solution. Since composition of continuous functions is continuous, $f \circ c:[0,1] \longrightarrow \mathbb{R}$ is continuous. The domain $[0,1]$ is compact, so $f \circ c$ attains its maximum and minimum values (owing to compactness of $(f \circ c)([0,1]))$. This is the same as the statement to be shown.

Problem 3 (p. 193, \#3). Let $f:[0,1] \longrightarrow[0,1]$ be continuous. Prove that f has a fixed point (i.e. a point $x \in[0,1]$ such that $f(x)=x)$.
Solution. Since f is continuous, $g(x)=f(x)-x$ is continuous. A fixed point is the same thing as a point $x_{0} \in[0,1]$ where $g\left(x_{0}\right)=0$.

Suppose there are no fixed points. Since $g([0,1])$ is connected, it must be that either $g(x)>0$ for all $x \in[0,1]$ or $g(x)<0$ for all $x \in[0,1]$. If $g(x)>0$, then $f(x)>x$ for all $x \in[0,1]$, but then $f(1)>1$ which contradicts the assumption on the range of $f:$ that $f:[0,1] \longrightarrow[0,1]$. On the other hand, if $g(x)<0$, then $f(x)<x$ for all $x \in[0,1]$, but then $f(0)<0$ which also contradicts the assumption on the range. Thus there must be some x such that $g(x)=0$, or equivalently $f(x)=x$.

Alternatively, we can note that $g(0)=f(0) \in[0,1]$ and $g(1)=f(1)-1 \in[-1,0]$, and by the intermediate value theorem, for any $c \in[g(1), g(0)]$, there exists x_{0} such that $g\left(x_{0}\right)=c$. In particular, $c=0$ always lies in $[g(1), g(0)]$, so there exists a fixed point.

Problem 4 (p. 174, \#21).
(a) Prove that a set $A \subset(M, d)$ is connected if and only if \emptyset and A are the only subsets of A that are open and closed relative to A. (A set $U \subset A$ is called open relative to A if $U=V \cap A$ for some open set $V \subset M$; 'closed relative to A ' is defined similarly.)
(b) Prove that \emptyset and \mathbb{R}^{n} are the only subsets of \mathbb{R}^{n} that are both open and closed.

Proof.

(a) A is not connected if and only if there exist separating open sets $U, V \subset M$ such that
(1) $A=(A \cap U) \cup(A \cap V)$,
(2) $A \cap U \neq \emptyset$,
(3) $A \cap V \neq \emptyset$,
(4) $(A \cap U) \cap(A \cap V)=\emptyset$.

Equivalently, $U^{\prime}=A \cap U$ and $V^{\prime}=A \cap V$ are nonempty, relatively open sets such that $U^{\prime}=A \backslash V^{\prime}$ and $V^{\prime}=A \backslash U^{\prime}$; in turn, this holds if and only if U^{\prime} is a nonempty open set in A which is not all of A and which is both open and closed. Since all the implications are if and only if, the proof is complete.
(b) \mathbb{R}^{n} is path-connected, since any points $x, y \in \mathbb{R}^{n}$ are connected by the path $c(t)=(1-t) x+t y$, hence is is connected. By part (a), it follows that the only subsets if it which are open and closed are \emptyset and \mathbb{R}^{n}.

Problem 5. Let (M_{1}, d_{1}) and $\left(M_{2}, d_{2}\right)$ be metric spaces with compact sets $K_{1} \subset M_{1}$ and $K_{2} \subset M_{2}$. Show that $K_{1} \times K_{2}$ is a compact subset of the space ($M_{1} \times M_{2}, d=d_{1}+d_{2}$). (The metric d on the product $M_{1} \times M_{2}$ is defined by $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)$.)

Solution. By Bolzano-Weierstrass, we may replace 'compact' by 'sequentially compact'. Let (x_{n}, y_{n}) be a sequence in $K_{1} \times K_{2}$. We are done if we show that it has a subsequence which converges in $K_{1} \times K_{2}$.

Since K_{1} is sequentially compact, there is a subsequence $x_{n(k)}$ which converges in K_{1} :

$$
x_{n(k)} \xrightarrow{k \rightarrow \infty} x \in K_{1} .
$$

Then consider the sequence $y_{n(k)}, k \in \mathbb{N}$, in K_{2}. Since K_{2} is sequentially compact, this has a further subsequence $y_{n(k(l))}, l \in \mathbb{N}$ which converges in K_{2} :

$$
y_{n(k(l))} \xrightarrow{l \rightarrow \infty} y \in K_{1} .
$$

The subsequence $x_{n(k(l))}$ of $x_{n(k)}$ also converges to x (since a subsequence of a convergent sequence always converges to the same limit), thus

$$
\left(x_{n(k(l))}, y_{n(k(l))}\right) \longrightarrow(x, y) \in K_{1} \times K_{2}
$$

is a convergent subsequence of the original.

