MATH 3150 — HOMEWORK 5

Problem 1 (p. 172, #1). Which of the following sets are connected? Which are compact?

( ) {(.%‘1,1‘2) € R? | ’1‘1‘ < 1}
(b) {z eR" | ||lz|| < 10}

(c) {zeR"|1< ||z|| <2}

(d) Z = {integers in R}

(e) a finite set in R

(f) {z eR" } ||| =1} (Be careful with the case n = 1!)
(g) Boundary of the unit square in R?

(h) The boundary of a bounded set in R

(i) The rationals in [0, 1]

(j) A closed set in [0, 1]

Solution.

) Connected, noncompact.

) Connected, compact.

) Compact. Connected if n > 2, not connected if n = 1.

) Not connected, not compact.

) Connected if just one point, otherwise not connected. Is compact.

) Compact. Connected if n > 2, not connected if n = 1, where the set is {£1} C R.

) Connected, compact.

) Always compact (the boundary of a set A is always closed, being the intersection of closed sets
cl(A) and cl(R\ A), and is bounded if the set is bounded). May or may not be connected: for
example bd([0,1]) = {0,1} is not connected, while bd({0}) = {0} is connected.

(i) Neither connected nor compact.

(j) Compact; may or may not be connected.
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Problem 2 (p. 191, #4). Let f : A C R" — R be continuous, z,y € A and ¢: [0,1] — A CR"
be a continuous curve joining x and y. Show that along this curve, f attains its maximum and
minimum values (among all values along the curve).

Solution. Since composition of continuous functions is continuous, foc: [0,1] — R is continu-
ous. The domain [0, 1] is compact, so f o ¢ attains its maximum and minimum values (owing to
compactness of (f oc)(]0,1])). This is the same as the statement to be shown. O

Problem 3 (p. 193, #3). Let f : [0,1] — [0, 1] be continuous. Prove that f has a fixed point (i.e.
a point x € [0,1] such that f(z) = z).

Solution. Since f is continuous, g(x) = f(z) — x is continuous. A fixed point is the same thing as
a point zg € [0, 1] where g(z¢) = 0.

Suppose there are no fixed points. Since ¢([0,1]) is connected, it must be that either g(z) > 0
for all z € [0,1] or g(z) < 0 for all z € [0,1]. If g(z) > 0, then f(z) > x for all x € [0, 1], but then
f(1) > 1 which contradicts the assumption on the range of f: that f :[0,1] — [0, 1]. On the other
hand, if g(z) < 0, then f(x) < z for all x € [0,1], but then f(0) < 0 which also contradicts the
assumption on the range. Thus there must be some z such that g(xz) = 0, or equivalently f(x) = x.
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Alternatively, we can note that g(0) = f(0) € [0,1] and g(1) = f(1) — 1 € [-1,0], and by
the intermediate value theorem, for any ¢ € [g(1),g(0)], there exists xy such that g(zp) = c¢. In
particular, ¢ = 0 always lies in [g(1), g(0)], so there exists a fixed point. O

Problem 4 (p. 174, #21).
(a) Prove that a set A C (M,d) is connected if and only if () and A are the only subsets of A that
are open and closed relative to A. (A set U C A is called open relative to A if U =V N A for

some open set V' C M; ‘closed relative to A’ is defined similarly.)
(b) Prove that () and R™ are the only subsets of R™ that are both open and closed.

Proof.

(a) A is not connected if and only if there exist separating open sets U,V C M such that

(1) A=(ANU)U(ANV),

(2) ANU # 0,

(3) ANV #0,

4) (ANU)N(ANV)=0.

Equivalently, U" = ANU and V' = ANV are nonempty, relatively open sets such that U’ = A\V’
and V' = A\ U’; in turn, this holds if and only if U’ is a nonempty open set in A which is not
all of A and which is both open and closed. Since all the implications are if and only if, the
proof is complete.

(b) R™ is path-connected, since any points x,y € R™ are connected by the path ¢(t) = (1 —t)x +ty,
hence is is connected. By part (a), it follows that the only subsets if it which are open and
closed are () and R™.

O

Problem 5. Let (M;,d;) and (Ma, d2) be metric spaces with compact sets K1 C M; and Ky C Mo.

Show that K7 x K is a compact subset of the space (M; X Ma,d = d; + dz). (The metric d on the
product M; x My is defined by d((z1,22), (y1,¥2)) = di(21,y1) + da(z2,y2).)

Solution. By Bolzano-Weierstrass, we may replace ‘compact’ by ‘sequentially compact’. Let (2, yn)
be a sequence in K1 X Ko. We are done if we show that it has a subsequence which converges in
Kq x KQ.

Since K; is sequentially compact, there is a subsequence x,,(;) which converges in Kj:

k
Tn(k) 2;) x € Kj.

Then consider the sequence y,,1), k € N, in K3. Since K3 is sequentially compact, this has a further
subsequence Yy (x(1)), { € N which converges in Ko:
—
Yn(e(t)) — ¥ € K1.

The subsequence (1)) of 7,1 also converges to = (since a subsequence of a convergent sequence
always converges to the same limit), thus

(Tn(r1)) Ynk@y)) — (2,Y) € K1 X Ko

is a convergent subsequence of the original. O



