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Problem 1 (p. 172, #1). Which of the following sets are connected? Which are compact?

(a)
{

(x1, x2) ∈ R2
∣∣ |x1| ≤ 1

}
(b)

{
x ∈ Rn

∣∣ ‖x‖ ≤ 10
}

(c)
{
x ∈ Rn

∣∣ 1 ≤ ‖x‖ ≤ 2
}

(d) Z = {integers in R}
(e) a finite set in R
(f)

{
x ∈ Rn

∣∣ ‖x‖ = 1
}

(Be careful with the case n = 1!)

(g) Boundary of the unit square in R2

(h) The boundary of a bounded set in R
(i) The rationals in [0, 1]
(j) A closed set in [0, 1]

Solution.

(a) Connected, noncompact.
(b) Connected, compact.
(c) Compact. Connected if n ≥ 2, not connected if n = 1.
(d) Not connected, not compact.
(e) Connected if just one point, otherwise not connected. Is compact.
(f) Compact. Connected if n ≥ 2, not connected if n = 1, where the set is {±1} ⊂ R.
(g) Connected, compact.
(h) Always compact (the boundary of a set A is always closed, being the intersection of closed sets

cl(A) and cl(R \A), and is bounded if the set is bounded). May or may not be connected: for
example bd([0, 1]) = {0, 1} is not connected, while bd({0}) = {0} is connected.

(i) Neither connected nor compact.
(j) Compact; may or may not be connected.

�

Problem 2 (p. 191, #4). Let f : A ⊂ Rn −→ R be continuous, x, y ∈ A and c : [0, 1] −→ A ⊂ Rn

be a continuous curve joining x and y. Show that along this curve, f attains its maximum and
minimum values (among all values along the curve).

Solution. Since composition of continuous functions is continuous, f ◦ c : [0, 1] −→ R is continu-
ous. The domain [0, 1] is compact, so f ◦ c attains its maximum and minimum values (owing to
compactness of (f ◦ c)([0, 1])). This is the same as the statement to be shown. �

Problem 3 (p. 193, #3). Let f : [0, 1] −→ [0, 1] be continuous. Prove that f has a fixed point (i.e.
a point x ∈ [0, 1] such that f(x) = x).

Solution. Since f is continuous, g(x) = f(x)− x is continuous. A fixed point is the same thing as
a point x0 ∈ [0, 1] where g(x0) = 0.

Suppose there are no fixed points. Since g([0, 1]) is connected, it must be that either g(x) > 0
for all x ∈ [0, 1] or g(x) < 0 for all x ∈ [0, 1]. If g(x) > 0, then f(x) > x for all x ∈ [0, 1], but then
f(1) > 1 which contradicts the assumption on the range of f : that f : [0, 1] −→ [0, 1]. On the other
hand, if g(x) < 0, then f(x) < x for all x ∈ [0, 1], but then f(0) < 0 which also contradicts the
assumption on the range. Thus there must be some x such that g(x) = 0, or equivalently f(x) = x.
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Alternatively, we can note that g(0) = f(0) ∈ [0, 1] and g(1) = f(1) − 1 ∈ [−1, 0], and by
the intermediate value theorem, for any c ∈ [g(1), g(0)], there exists x0 such that g(x0) = c. In
particular, c = 0 always lies in [g(1), g(0)], so there exists a fixed point. �

Problem 4 (p. 174, #21).

(a) Prove that a set A ⊂ (M,d) is connected if and only if ∅ and A are the only subsets of A that
are open and closed relative to A. (A set U ⊂ A is called open relative to A if U = V ∩ A for
some open set V ⊂M ; ‘closed relative to A’ is defined similarly.)

(b) Prove that ∅ and Rn are the only subsets of Rn that are both open and closed.

Proof.

(a) A is not connected if and only if there exist separating open sets U, V ⊂M such that
(1) A = (A ∩ U) ∪ (A ∩ V ),
(2) A ∩ U 6= ∅,
(3) A ∩ V 6= ∅,
(4) (A ∩ U) ∩ (A ∩ V ) = ∅.
Equivalently, U ′ = A∩U and V ′ = A∩V are nonempty, relatively open sets such that U ′ = A\V ′

and V ′ = A \ U ′; in turn, this holds if and only if U ′ is a nonempty open set in A which is not
all of A and which is both open and closed. Since all the implications are if and only if, the
proof is complete.

(b) Rn is path-connected, since any points x, y ∈ Rn are connected by the path c(t) = (1− t)x+ ty,
hence is is connected. By part (a), it follows that the only subsets if it which are open and
closed are ∅ and Rn.

�

Problem 5. Let (M1, d1) and (M2, d2) be metric spaces with compact sets K1 ⊂M1 and K2 ⊂M2.
Show that K1×K2 is a compact subset of the space (M1×M2, d = d1 + d2). (The metric d on the
product M1 ×M2 is defined by d

(
(x1, x2), (y1, y2)

)
= d1(x1, y1) + d2(x2, y2).)

Solution. By Bolzano-Weierstrass, we may replace ‘compact’ by ‘sequentially compact’. Let (xn, yn)
be a sequence in K1 ×K2. We are done if we show that it has a subsequence which converges in
K1 ×K2.

Since K1 is sequentially compact, there is a subsequence xn(k) which converges in K1:

xn(k)
k→∞−→ x ∈ K1.

Then consider the sequence yn(k), k ∈ N, in K2. Since K2 is sequentially compact, this has a further
subsequence yn(k(l)), l ∈ N which converges in K2:

yn(k(l))
l→∞−→ y ∈ K1.

The subsequence xn(k(l)) of xn(k) also converges to x (since a subsequence of a convergent sequence
always converges to the same limit), thus

(xn(k(l)), yn(k(l))) −→ (x, y) ∈ K1 ×K2

is a convergent subsequence of the original. �
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