MATH 3150 — HOMEWORK 5

Problem 1 (p. 172, #1). Which of the following sets are connected? Which are compact?

- (a) $\{(x_1, x_2) \in \mathbb{R}^2 \mid |x_1| \le 1\}$
- (b) $\{x \in \mathbb{R}^n \mid ||x|| \le 10\}$
- (c) $\{x \in \mathbb{R}^n \mid 1 \le ||x|| \le 2\}$
- (d) $\mathbb{Z} = \{ \text{integers in } \mathbb{R} \}$
- (e) a finite set in \mathbb{R}
- (f) $\{x \in \mathbb{R}^n \mid ||x|| = 1\}$ (Be careful with the case n = 1!)
- (g) Boundary of the unit square in \mathbb{R}^2
- (h) The boundary of a bounded set in \mathbb{R}
- (i) The rationals in [0, 1]
- (j) A closed set in [0, 1]

Problem 2 (p. 191, #4). Let $f : A \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ be continuous, $x, y \in A$ and $c : [0, 1] \longrightarrow A \subset \mathbb{R}^n$ be a continuous curve joining x and y. Show that along this curve, f attains its maximum and minimum values (among all values along the curve).

Problem 3 (p. 193, #3). Let $f : [0, 1] \longrightarrow [0, 1]$ be continuous. Prove that f has a fixed point (i.e. a point $x \in [0, 1]$ such that f(x) = x).

Problem 4 (p. 174, #21).

- (a) Prove that a set $A \subset (M, d)$ is connected if and only if \emptyset and A are the only subsets of A that are open and closed relative to A. (A set $U \subset A$ is called *open relative to* A if $U = V \cap A$ for some open set $V \subset M$; 'closed relative to A' is defined similarly.)
- (b) Prove that \emptyset and \mathbb{R}^n are the only subsets of \mathbb{R}^n that are both open and closed.

Problem 5. Let (M_1, d_1) and (M_2, d_2) be metric spaces with compact sets $K_1 \subset M_1$ and $K_2 \subset M_2$. Show that $K_1 \times K_2$ is a compact subset of the space $(M_1 \times M_2, d = d_1 + d_2)$. (The metric d on the product $M_1 \times M_2$ is defined by $d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$.)