MATH 3150 - HOMEWORK 5

Problem 1 (p. 172, \#1). Which of the following sets are connected? Which are compact?
(a) $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}| | x_{1} \mid \leq 1\right\}$
(b) $\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 10\right\}$
(c) $\left\{x \in \mathbb{R}^{n} \mid 1 \leq\|x\| \leq 2\right\}$
(d) $\mathbb{Z}=\{$ integers in $\mathbb{R}\}$
(e) a finite set in \mathbb{R}
(f) $\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}$ (Be careful with the case $n=1$!)
(g) Boundary of the unit square in \mathbb{R}^{2}
(h) The boundary of a bounded set in \mathbb{R}
(i) The rationals in $[0,1]$
(j) A closed set in $[0,1]$

Problem 2 (p. 191, \#4). Let $f: A \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be continuous, $x, y \in A$ and $c:[0,1] \longrightarrow A \subset \mathbb{R}^{n}$ be a continuous curve joining x and y. Show that along this curve, f attains its maximum and minimum values (among all values along the curve).

Problem 3 (p. 193, \#3). Let $f:[0,1] \longrightarrow[0,1]$ be continuous. Prove that f has a fixed point (i.e. a point $x \in[0,1]$ such that $f(x)=x)$.
Problem 4 (p. 174, \#21).
(a) Prove that a set $A \subset(M, d)$ is connected if and only if \emptyset and A are the only subsets of A that are open and closed relative to A. (A set $U \subset A$ is called open relative to A if $U=V \cap A$ for some open set $V \subset M$; 'closed relative to A ' is defined similarly.)
(b) Prove that \emptyset and \mathbb{R}^{n} are the only subsets of \mathbb{R}^{n} that are both open and closed.

Problem 5. Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces with compact sets $K_{1} \subset M_{1}$ and $K_{2} \subset M_{2}$. Show that $K_{1} \times K_{2}$ is a compact subset of the space ($M_{1} \times M_{2}, d=d_{1}+d_{2}$). (The metric d on the product $M_{1} \times M_{2}$ is defined by $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+d_{2}\left(x_{2}, y_{2}\right)$.)

