MATH 3150 - HOMEWORK 4

Problem 1 (p. 125, \#2). Let (M, d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that M is complete.

Solution. We want to show that every Cauchy sequence in M converges. Suppose x_{n} is a Cauchy sequence in M. Then x_{n} is bounded, as proved in class, so by assumption it has a convergent subsequence. But if a subsequence of a Cauchy sequence converges to x, then the Cauchy sequence converges to x, so we conclude that x_{n} converges.

Problem 2 (p. 231, \#1).
(a) Prove directly (i.e. with ' ε 's and ' δ 's) that the function $1 / x^{2}$ is continuous on $(0, \infty)$.
(b) A constant function $f: A \longrightarrow \mathbb{R}^{m}$ is a function such that $f(x)=f(y)$ for all $x, y \in A$. Show that f is continuous.
(c) Is the function $f: \mathbb{R} \longrightarrow \mathbb{R}, f(y)=1 /\left(y^{4}+y^{2}+1\right)$ continuous? Justify your answer.

Solution.

(a) Let $x_{0} \in(0, \infty)$. Given $\varepsilon>0$, we have to find a $\delta>0$ such that

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|1 / x^{2}-1 / x_{0}^{2}\right|<\varepsilon .
$$

To estimate the latter, we notice

$$
\begin{equation*}
\left|\frac{1}{x^{2}}-\frac{1}{x_{0}^{2}}\right|=\frac{\left|x_{0}^{2}-x^{2}\right|}{x_{0}^{2} x^{2}}=\frac{\left|x+x_{0}\right|\left|x-x_{0}\right|}{x_{0}^{2} x^{2}} . \tag{1}
\end{equation*}
$$

We are not allowed to let δ depend on x, though it may depend on ε and x_{0}. The term $\left|x-x_{0}\right|$ is good, since this will be less than δ, but we have to find a way to estimate the other factors. Notice that if we require

$$
\left|x-x_{0}\right|<x_{0} / 2,
$$

then we can conclude

$$
|x|>x_{0} / 2, \quad \text { and } \quad\left|x+x_{0}\right|<x_{0}+3 x_{0} / 2=5 x_{0} / 2
$$

It then follows that (1) is estimated by

$$
\frac{\left|x+x_{0}\right|\left|x-x_{0}\right|}{x_{0}^{2} x^{2}}<\frac{5 x_{0}}{2} \frac{1}{x_{0}^{2}\left(x_{0} / 2\right)^{2}}\left|x-x_{0}\right|=\frac{10}{x_{0}^{3}}\left|x-x_{0}\right| .
$$

Thus, given $\varepsilon>0$, we choose $\delta=\min \left\{x_{0} / 2,10 \varepsilon / x_{0}^{3}\right\}$. Then if $\left|x-x_{0}\right|<\delta$, it follows by the above computations that

$$
\left|\frac{1}{x^{2}}-\frac{1}{x_{0}^{2}}\right|=\frac{\left|x+x_{0}\right|\left|x-x_{0}\right|}{x_{0}^{2} x^{2}}<\frac{10}{x_{0}^{3}}\left|x-x_{0}\right| \leq \varepsilon .
$$

(b) Let f be the constant function $f(x)=c \in \mathbb{R}^{m}$ for all $x \in A$. Let $B \subset \mathbb{R}^{m}$ be a closed set. If $c \in B$, then $f^{-1}(B)=A$, which is closed in A, and if $c \notin B$, then $f^{-1}(B)=\emptyset$, which is also closed in A. Thus f is continuous.

Alternatively, given any $\varepsilon>0$, we can choose $\delta>0$ however we like, say $\delta=1$. Then for $d(x, y)<\delta$,

$$
|f(x)-f(y)|=|c-c|=0<\varepsilon .
$$

(c) The function is continuous. Indeed, $g(y)=1+y^{2}+y^{4}$ is a sum of products of continuous functions, hence continuous. Also, $g(y) \neq 0$ for any y since $y^{2} \geq 0$ and $y^{4} \geq 0$ so $g(y) \geq 1$. Then $f(y)=1 / g(y)$ is also continuous.

Problem 3. Define maps $s: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ and $m: \mathbb{R} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ as addition and scalar multiplication:

$$
s(x, y)=x+y, \quad \text { and } \quad m(\lambda, x)=\lambda x .
$$

Show that these maps are continuous.
Solution. We use the sequential characteriztaion of continuity. Thus consider a convergent sequence $\left(x_{n}, y_{n}\right) \longrightarrow(x, y)$ in the domain $\mathbb{R}^{n} \times \mathbb{R}^{n}$ for s. Since $\mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ and convergence in \mathbb{R}^{n} is equivalent to convergence of component sequences, it follows that $x_{n} \longrightarrow x$ and $y_{n} \longrightarrow y$ in \mathbb{R}^{n}. By the limit theorem for \mathbb{R}^{n}, the sequence

$$
s\left(x_{n}, y_{n}\right)=x_{n}+y_{n} \longrightarrow x+y=s(x, y) .
$$

This implies that s is continuous.
Likewise, suppose $\left(\lambda_{n}, x_{n}\right) \longrightarrow(\lambda, x)$ is a convergent sequence in $\mathbb{R} \times \mathbb{R}^{n}=\mathbb{R}^{n+1}$. In particular $\lambda_{n} \longrightarrow \lambda$ in \mathbb{R} and $x_{n} \longrightarrow x$ in \mathbb{R}^{n}. Then

$$
m\left(\lambda_{n}, x_{n}\right)=\lambda_{n} x_{n} \longrightarrow \lambda x=m(\lambda, x),
$$

so m is continuous.
Problem 4 (p. 182, \#5, p. 184, \#3).
(a) Give an example of a continuous map $f: \mathbb{R} \longrightarrow \mathbb{R}$ and an open subset $A \subset \mathbb{R}$ such that $f(A)$ is not open.
(b) Give an example of a continuous map $f: \mathbb{R} \longrightarrow \mathbb{R}$ and a closed subset $B \subset \mathbb{R}$ such that $f(B)$ is not closed.

Solution. (a) Take, for instance, $f(x)=0$ for all x, and A to be any nonempty open set. Then $F(A)=\{0\}$, which is not open.
(b) Consider

$$
\begin{gathered}
f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x)=x^{2} /\left(x^{2}+1\right), \\
B=[0, \infty) \subset \mathbb{R} .
\end{gathered}
$$

The function is continuous since the map $x \longmapsto x^{2}$ is continuous and the map $x \longmapsto x^{2}+1$ are continuous and nonvanishing. However $f(B)=[0,1) \subset \mathbb{R}$, which is not closed.

Problem 5 (p. 232, \#9). Prove the following "gluing lemma": Let $f:[a, b] \longrightarrow \mathbb{R}^{m}$ and g : $[b, c] \longrightarrow \mathbb{R}^{m}$ be continuous, and such that $f(b)=g(b)$. Define $h:[a, c] \longrightarrow \mathbb{R}^{m}$ by $h=f$ on $[a, b]$ and $h=g$ on $[b, c]$. Then h is continuous. Generalize this result to sets $A, B \subset(M, d)$ in a metric space, with functions $f: A \longrightarrow(N, \rho)$ and $g: B \longrightarrow(N, \rho)$.
Solution. The general statement is that if $A, B \subset(M, d)$ are closed sets, and $f: A \longrightarrow(N, \rho)$ and $g: B \longrightarrow(N, \rho)$ are continuous functions such that $f=g$ on $A \cap B$, then there exists a continuous function

$$
\begin{gathered}
h: A \cup B \longrightarrow(N, \rho), \quad \text { such that } \\
h(x)=f(x), \text { if } x \in A, \quad h(x)=g(x), \text { if } x \in B .
\end{gathered}
$$

We define h by $h(x)=f(x)$ for $x \in A$ and $h(x)=g(x)$ for $x \in B$; the hypothesis that $f=g$ on $A \cap B$ means that this is well-defined.

To see that h is continuous, suppose $x_{k} \longrightarrow x$ in $A \cup B$. We deal with three cases. First if $x \in A$ but $x \notin A \cap B$, then $x \in A \backslash(A \cap B)$, which is an open set relative to A since $A \cap B$ is closed. This implies that $x_{k} \in A$ for k sufficiently large (i.e. there exists an N such that $x_{k} \in A$ for $k \geq N$) and then $f\left(x_{k}\right) \longrightarrow f(x)$ which means that $h\left(x_{k}\right) \longrightarrow h(x)$. The case that $x \in B$ but $x \notin A \cap B$ is similar.

Finally, suppose that $x \in A \cap B$. Given $\varepsilon>0$, there exist $\delta_{1}>0$ and $\delta_{2}>0$ such that

$$
\begin{aligned}
x^{\prime}, x \in A, d\left(x^{\prime}, x\right)<\delta_{1} & \Longrightarrow \rho\left(f\left(x^{\prime}\right), f(x)\right)<\varepsilon \\
x^{\prime \prime}, x \in B, d\left(x^{\prime \prime}, x\right)<\delta_{2} & \Longrightarrow \rho\left(g\left(x^{\prime \prime}\right), g(x)\right)<\varepsilon
\end{aligned}
$$

Letting $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and taking $N \in \mathbb{N}$ so that $d\left(x_{k}, x\right)<\delta$ for all $k \geq N$, it follows that for $k \geq N$,

$$
\left|h\left(x_{k}\right)-h(x)\right|= \begin{cases}\left|f\left(x_{k}\right)-f(x)\right|<\varepsilon, & x_{k} \in A, \\ \left|g\left(x_{k}\right)-g(x)\right|<\varepsilon, & x_{k} \in B,\end{cases}
$$

and thus that $h\left(x_{k}\right) \longrightarrow h(x)$. Since x_{k} was an arbitrary convergent sequence in $A \cup B$, we conclude that h is continuous.

Alternatively, we can argue as follows. With h defined as above, consider a closed set $C \subset$ $h(A \cup B) . h^{-1}(C)=f^{-1}(C) \cup g^{-1}(C)$ as can be seen from the definition of h. Now $f^{-1}(C)$ and $g^{-1}(C)$ are relatively closed in A and B, respectively, since f and g are continuous. Since A and B are themselves closed, $\left(f^{-1}(C) \cap A\right) \subset A \cup B$ is closed relative to $A \cup B$ and likewise for $\left.g^{-1}(C) \cap B\right) \subset A \cup B$. Thus $h^{-1}(C)$ is closed and h is therefore continuous.

There is a version of the theorem also for A and B both open, with $f=g$ on $A \cap B$. In this case we consider $h^{-1}(U)=f^{-1}(U) \cup g^{-1}(U)$ for an open set $U \subset N$, and deduce that it is relatively open.

