
MATH 3150 — HOMEWORK 4

Problem 1 (p. 125, #2). Let (M,d) be a metric space with the property that every bounded
sequence has a convergent subsequence. Prove that M is complete.

Solution. We want to show that every Cauchy sequence in M converges. Suppose xn is a Cauchy
sequence in M. Then xn is bounded, as proved in class, so by assumption it has a convergent
subsequence. But if a subsequence of a Cauchy sequence converges to x, then the Cauchy sequence
converges to x, so we conclude that xn converges. �

Problem 2 (p. 231, #1).

(a) Prove directly (i.e. with ‘ε’s and ‘δ’s) that the function 1/x2 is continuous on (0,∞).
(b) A constant function f : A −→ Rm is a function such that f(x) = f(y) for all x, y ∈ A. Show

that f is continuous.
(c) Is the function f : R −→ R, f(y) = 1/(y4 + y2 + 1) continuous? Justify your answer.

Solution.

(a) Let x0 ∈ (0,∞). Given ε > 0, we have to find a δ > 0 such that

|x− x0| < δ =⇒
∣∣1/x2 − 1/x20

∣∣ < ε.

To estimate the latter, we notice∣∣∣∣ 1

x2
− 1

x20

∣∣∣∣ =

∣∣x20 − x2∣∣
x20x

2
=
|x+ x0| |x− x0|

x20x
2

. (1)

We are not allowed to let δ depend on x, though it may depend on ε and x0. The term |x− x0|
is good, since this will be less than δ, but we have to find a way to estimate the other factors.
Notice that if we require

|x− x0| < x0/2,

then we can conclude

|x| > x0/2, and |x+ x0| < x0 + 3x0/2 = 5x0/2.

It then follows that (1) is estimated by

|x+ x0| |x− x0|
x20x

2
<

5x0
2

1

x20 (x0/2)2
|x− x0| =

10

x30
|x− x0| .

Thus, given ε > 0, we choose δ = min
{
x0/2, 10ε/x30

}
. Then if |x− x0| < δ, it follows by the

above computations that∣∣∣∣ 1

x2
− 1

x20

∣∣∣∣ =
|x+ x0| |x− x0|

x20x
2

<
10

x30
|x− x0| ≤ ε.

(b) Let f be the constant function f(x) = c ∈ Rm for all x ∈ A. Let B ⊂ Rm be a closed set. If
c ∈ B, then f−1(B) = A, which is closed in A, and if c /∈ B, then f−1(B) = ∅, which is also
closed in A. Thus f is continuous.

Alternatively, given any ε > 0, we can choose δ > 0 however we like, say δ = 1. Then for
d(x, y) < δ,

|f(x)− f(y)| = |c− c| = 0 < ε.
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(c) The function is continuous. Indeed, g(y) = 1 + y2 + y4 is a sum of products of continuous
functions, hence continuous. Also, g(y) 6= 0 for any y since y2 ≥ 0 and y4 ≥ 0 so g(y) ≥ 1.
Then f(y) = 1/g(y) is also continuous.

�

Problem 3. Define maps s : Rn × Rn −→ Rn and m : R × Rn −→ Rn as addition and scalar
multiplication:

s(x, y) = x+ y, and m(λ, x) = λx.

Show that these maps are continuous.

Solution. We use the sequential characteriztaion of continuity. Thus consider a convergent sequence
(xn, yn) −→ (x, y) in the domain Rn × Rn for s. Since Rn × Rn = R2n and convergence in Rn is
equivalent to convergence of component sequences, it follows that xn −→ x and yn −→ y in Rn.
By the limit theorem for Rn, the sequence

s(xn, yn) = xn + yn −→ x+ y = s(x, y).

This implies that s is continuous.
Likewise, suppose (λn, xn) −→ (λ, x) is a convergent sequence in R× Rn = Rn+1. In particular

λn −→ λ in R and xn −→ x in Rn. Then

m(λn, xn) = λn xn −→ λx = m(λ, x),

so m is continuous. �

Problem 4 (p. 182, #5, p. 184, #3).

(a) Give an example of a continuous map f : R −→ R and an open subset A ⊂ R such that f(A)
is not open.

(b) Give an example of a continuous map f : R −→ R and a closed subset B ⊂ R such that f(B)
is not closed.

Solution. (a) Take, for instance, f(x) = 0 for all x, and A to be any nonempty open set. Then
F (A) = {0}, which is not open.

(b) Consider

f : R −→ R, f(x) = x2/(x2 + 1),

B = [0,∞) ⊂ R.
The function is continuous since the map x 7−→ x2 is continuous and the map x 7−→ x2 + 1 are
continuous and nonvanishing. However f(B) = [0, 1) ⊂ R, which is not closed.

�

Problem 5 (p. 232, #9). Prove the following “gluing lemma”: Let f : [a, b] −→ Rm and g :
[b, c] −→ Rm be continuous, and such that f(b) = g(b). Define h : [a, c] −→ Rm by h = f on [a, b]
and h = g on [b, c]. Then h is continuous. Generalize this result to sets A,B ⊂ (M,d) in a metric
space, with functions f : A −→ (N, ρ) and g : B −→ (N, ρ).

Solution. The general statement is that if A,B ⊂ (M,d) are closed sets, and f : A −→ (N, ρ) and
g : B −→ (N, ρ) are continuous functions such that f = g on A∩B, then there exists a continuous
function

h : A ∪B −→ (N, ρ), such that

h(x) = f(x), if x ∈ A, h(x) = g(x), if x ∈ B.
We define h by h(x) = f(x) for x ∈ A and h(x) = g(x) for x ∈ B; the hypothesis that f = g on
A ∩B means that this is well-defined.
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To see that h is continuous, suppose xk −→ x in A∪B. We deal with three cases. First if x ∈ A
but x /∈ A∩B, then x ∈ A \ (A∩B), which is an open set relative to A since A∩B is closed. This
implies that xk ∈ A for k sufficiently large (i.e. there exists an N such that xk ∈ A for k ≥ N)
and then f(xk) −→ f(x) which means that h(xk) −→ h(x). The case that x ∈ B but x /∈ A ∩B is
similar.

Finally, suppose that x ∈ A ∩B. Given ε > 0, there exist δ1 > 0 and δ2 > 0 such that

x′, x ∈ A, d(x′, x) < δ1 =⇒ ρ(f(x′), f(x)) < ε,

x′′, x ∈ B, d(x′′, x) < δ2 =⇒ ρ(g(x′′), g(x)) < ε.

Letting δ = min {δ1, δ2} and taking N ∈ N so that d(xk, x) < δ for all k ≥ N , it follows that for
k ≥ N ,

|h(xk)− h(x)| =

{
|f(xk)− f(x)| < ε, xk ∈ A,
|g(xk)− g(x)| < ε, xk ∈ B,

and thus that h(xk) −→ h(x). Since xk was an arbitrary convergent sequence in A∪B, we conclude
that h is continuous.

Alternatively, we can argue as follows. With h defined as above, consider a closed set C ⊂
h(A ∪ B). h−1(C) = f−1(C) ∪ g−1(C) as can be seen from the definition of h. Now f−1(C) and
g−1(C) are relatively closed in A and B, respectively, since f and g are continuous. Since A
and B are themselves closed, (f−1(C) ∩ A) ⊂ A ∪ B is closed relative to A ∪ B and likewise for
g−1(C) ∩B) ⊂ A ∪B. Thus h−1(C) is closed and h is therefore continuous.

There is a version of the theorem also for A and B both open, with f = g on A∩B. In this case
we consider h−1(U) = f−1(U) ∪ g−1(U) for an open set U ⊂ N , and deduce that it is relatively
open. �
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