MATH 3150 — HOMEWORK 4

Problem 1 (p. 125, #2). Let (M,d) be a metric space with the property that every bounded
sequence has a convergent subsequence. Prove that M is complete.

Solution. We want to show that every Cauchy sequence in M converges. Suppose z,, is a Cauchy
sequence in M. Then x, is bounded, as proved in class, so by assumption it has a convergent
subsequence. But if a subsequence of a Cauchy sequence converges to z, then the Cauchy sequence
converges to x, so we conclude that x,, converges. O

Problem 2 (p. 231, #1).

(a) Prove directly (i.e. with ‘c’s and ‘6’s) that the function 1/2? is continuous on (0, 00).

(b) A constant function f: A — R™ is a function such that f(z) = f(y) for all z,y € A. Show
that f is continuous.

(c) Is the function f: R — R, f(y) = 1/(y* + y? + 1) continuous? Justify your answer.

Solution.
(a) Let zg € (0,00). Given € > 0, we have to find a § > 0 such that
|z — 20| <0 = [1/2* —1/af| <e.

To estimate the latter, we notice
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We are not allowed to let 6 depend on z, though it may depend on ¢ and xy. The term |z — x|
is good, since this will be less than §, but we have to find a way to estimate the other factors.
Notice that if we require

|z — zo| < 20/2,
then we can conclude
|z| > x0/2, and |z + xo| <z + 3x0/2 = bxo/2.
It then follows that is estimated by
|z + 2ol |z — 20| _ 5o 1
A <2 e gl

Thus, given € > 0, we choose § = min {x/2,10e/z3}. Then if |z — zo| < §, it follows by the
above computations that
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(b) Let f be the constant function f(z) = c € R™ for all x € A. Let B C R™ be a closed set. If
c € B, then f~1(B) = A, which is closed in A4, and if ¢ ¢ B, then f~!(B) = (), which is also
closed in A. Thus f is continuous.

Alternatively, given any € > 0, we can choose § > 0 however we like, say 6 = 1. Then for
d(z,y) <9,
@)~ F@l = le—cd =0 <e.
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(c) The function is continuous. Indeed, g(y) = 1 + y* + y* is a sum of products of continuous
functions, hence continuous. Also, g(y) # 0 for any y since y?> > 0 and y* > 0 so g(y) > 1.
Then f(y) = 1/g(y) is also continuous.

0

Problem 3. Define maps s : R® x R” — R"™ and m : R x R®” — R" as addition and scalar
multiplication:
s(z,y)=x+y, and m(\z) = Azx.

Show that these maps are continuous.

Solution. We use the sequential characteriztaion of continuity. Thus consider a convergent sequence
(Tn,yn) — (x,y) in the domain R™ x R™ for s. Since R” x R® = R?" and convergence in R" is
equivalent to convergence of component sequences, it follows that x, — = and y, — y in R™.
By the limit theorem for R™, the sequence

$(Tn, Yn) = Tn + Yo — x+y = s(z,y).
This implies that s is continuous.

Likewise, suppose (A, 7,) — (), ) is a convergent sequence in R x R” = R*"*!, In particular
An — Ain R and z,, — x in R™. Then

m(An, Tn) = Ay Ty —> Az =m(\, z),
so m is continuous. O

Problem 4 (p. 182, #5, p. 184, #3).

(a) Give an example of a continuous map f : R — R and an open subset A C R such that f(A)
is not open.

(b) Give an example of a continuous map f : R — R and a closed subset B C R such that f(B)
is not closed.

Solution. (a) Take, for instance, f(x) = 0 for all z, and A to be any nonempty open set. Then
F(A) = {0}, which is not open.
(b) Consider
f:R—R, f(z)=2%/(z>+1),
B =10,00) CR.

The function is continuous since the map x — 22 is continuous and the map z — 22+ 1 are
continuous and nonvanishing. However f(B) = [0,1) C R, which is not closed.
O

Problem 5 (p. 232, #9). Prove the following “gluing lemma”: Let f : [a,b] — R™ and g :
[b,c] — R™ be continuous, and such that f(b) = g(b). Define h : [a,c] — R™ by h = f on [a,]
and h = g on [b,c]. Then h is continuous. Generalize this result to sets A, B C (M,d) in a metric
space, with functions f: A — (N,p) and g : B — (N, p).

Solution. The general statement is that if A, B C (M,d) are closed sets, and f: A — (N, p) and
g: B — (N, p) are continuous functions such that f = g on AN B, then there exists a continuous
function
h:AUB — (N,p), such that
h(z) = f(z), ifz € A, h(z) =g(z), if 2z € B.

We define h by h(z) = f(z) for x € A and h(z) = g(x) for x € B; the hypothesis that f = g on
AN B means that this is well-defined.
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To see that h is continuous, suppose xx —> x in AU B. We deal with three cases. First if z € A
but x ¢ AN B, then 2 € A\ (AN B), which is an open set relative to A since AN B is closed. This
implies that z; € A for k sufficiently large (i.e. there exists an N such that zx € A for k > N)
and then f(zr) — f(z) which means that h(zy) — h(z). The case that z € Bbut x ¢ AN B is
similar.

Finally, suppose that x € AN B. Given ¢ > 0, there exist 1 > 0 and ds > 0 such that

Pxe A d,z) <6 = p(f(2), f(z)) <e,
2" x € B, d(a",x) <5 = p(g(z"),g(z)) < e.

Letting 0 = min {0, 2} and taking N € N so that d(xy,x) < J for all £ > N, it follows that for
k> N,
|h($k)—h($)’: ‘f(xk) f(x)| <g, LUkEA,
lg(z) —g(x)| <e, ax € B,
and thus that h(zy) — h(z). Since x, was an arbitrary convergent sequence in AU B, we conclude
that h is continuous.

Alternatively, we can argue as follows. With h defined as above, consider a closed set C' C
h(AUB). h™1(C) = f~1(C) U g1(C) as can be seen from the definition of h. Now f~1(C) and
g 1(O) are relatively closed in A and B, respectively, since f and g are continuous. Since A
and B are themselves closed, (f~1(C) N A) C AU B is closed relative to AU B and likewise for
g 1(C)NB) c AU B. Thus h=}(C) is closed and h is therefore continuous.

There is a version of the theorem also for A and B both open, with f = g on AN B. In this case
we consider h~1(U) = f~1(U) U g~ }(U) for an open set U C N, and deduce that it is relatively
open. ]



