MATH 3150 — HOMEWORK 4

Problem 1 (p. 125, #2). Let (M, d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that M is complete.

Problem 2 (p. 231, #1).

- (a) Prove directly (i.e. with ' ε 's and ' δ 's) that the function $1/x^2$ is continuous on $(0, \infty)$.
- (b) A constant function $f : A \longrightarrow \mathbb{R}^m$ is a function such that f(x) = f(y) for all $x, y \in A$. Show that f is continuous.
- (c) Is the function $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(y) = 1/(y^4 + y^2 + 1)$ continuous? Justify your answer.

Problem 3. Define maps $s : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and $m : \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ as addition and scalar multiplication:

$$s(x,y) = x + y$$
, and $m(\lambda, x) = \lambda x$.

Show that these maps are continuous.

Problem 4 (p. 182, #5, p. 184, #3).

- (a) Give an example of a continuous map $f : \mathbb{R} \longrightarrow \mathbb{R}$ and an open subset $A \subset \mathbb{R}$ such that f(A) is *not* open.
- (b) Give an example of a continuous map $f : \mathbb{R} \longrightarrow \mathbb{R}$ and a closed subset $B \subset \mathbb{R}$ such that f(B) is *not* closed.

Problem 5 (p. 232, #9). Prove the following "gluing lemma": Let $f : [a, b] \longrightarrow \mathbb{R}^m$ and $g : [b, c] \longrightarrow \mathbb{R}^m$ be continuous, and such that f(b) = g(b). Define $h : [a, c] \longrightarrow \mathbb{R}^m$ by h = f on [a, b] and h = g on [b, c]. Then h is continuous. Generalize this result to sets $A, B \subset (M, d)$ in a metric space, with functions $f : A \longrightarrow (N, \rho)$ and $g : B \longrightarrow (N, \rho)$.