
MATH 3150 — HOMEWORK 3

Problem 1 (p. 70, #1, #3, #4). This problem concerns the vector space C([0, 1]) of continuous,
real-valued functions f : [0, 1] −→ R, equipped with the inner product and two different norms:

〈f, g〉 =

∫ 1

0
f(x)g(x) dx, ‖f‖2 =

√
〈f, f〉, ‖f‖∞ = sup {|f(x)| : x ∈ [0, 1]} .

(a) For f(x) = 1 and g(x) = x, find d(f, g) for both the sup norm ‖·‖∞ and the L2-norm ‖·‖2 .
(b) Verify the Cauchy-Schwarz inequality for f(x) = 1 and g(x) = x.
(c) Verify the triangle inequality for f(x) = x and g(x) = x2 in both norms.

Solution.

(a)
d∞(1, x) = ‖1− x‖∞ = sup {|1− x| : x ∈ [0, 1]} = 1,

d2(1, x) = ‖1− x‖2 =
( ∫ 1

0 (1− x)2 dx
)1/2

= 1√
3
.

(b) On the one hand we have

|〈1, x〉| =
∣∣∣∫ 1

0 1 · x dx
∣∣∣ = 1

2 .

On the other hand,

‖1‖2 =
( ∫ 1

0 12 dx
)1/2

= 1, and

‖x‖2 =
( ∫ 1

0 x2 dx
)1/2

= 1√
2
.

Since 2 >
√

2, we have
|〈1, x〉| = 1

2 < 1√
2

= ‖1‖2 ‖x‖2 .
(c) In the sup norm, ∥∥x + x2

∥∥
∞ = sup

{
x + x2 : x ∈ [0, 1]

}
= 2,

‖x‖∞ = sup {x : x ∈ [0, 1]} = 1,∥∥x2∥∥∞ = sup {x : x ∈ [0, 1]} = 1.

So indeed
∥∥x + x2

∥∥
∞ = 2 ≤ 2 = ‖x‖∞ +

∥∥x2∥∥∞ . For the L2 norm,∥∥x + x2
∥∥
2

=
( ∫ 1

0 (x + x2)2 dx
)1/2

=
√
31√
30
,

‖x‖2 =
( ∫ 1

0 x2 dx
)1/2

= 1√
2
,∥∥x2∥∥

2
=
( ∫ 1

0 x4 dx
)1/2

= 1√
5
,

and indeed,
1√
2

+
1√
5

=

√
5 +
√

2√
10

=

√
15 +

√
6√

30
≥
√

31√
30

. �

Problem 2 (p. 108, #4). Let B ⊂ Rn be any set. Define

C = {x ∈ Rn : d(x, y) < 1 for some y ∈ B} .
Show that C is open.
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Solution. Let x ∈ C; we must show that there exists an ε > 0 such that D(x, ε) ⊂ C. By definition,
there exists some y ∈ B such that d(x, y) < 1, and we set ε = 1− d(x, y). Then

z ∈ D(x, ε) ⇐⇒ d(z, x) < ε

=⇒ d(z, y) ≤ d(z, x) + d(x, y) < ε + d(x, y) = 1

so D(x, ε) ⊂ C. �

Problem 3 (p. 108, #6).

(a) In R2, show that

‖x‖ ≤ ‖x‖1 ≤
√

2 ‖x‖
where ‖x‖1 = |x1|+ |x2| is the taxicab norm, and ‖x‖ =

√
x21 + x22 is the usual Euclidean norm.

(b) Use the results of the first part to show that R2 with the taxicab metric d1(x, y) = |x1 − y1|+
|x2 − y2| has the same open sets as it does with the standard metric d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2.

In other words, show that every set which is open with respect to d is also open with respect
to d1 and vice versa.

Solution. (a) Consider

‖x‖2 = |x1|2 + |x2|2 ≤ |x1|2 + |x2|2 + 2 |x1| |x2| = (|x1|+ |x2|)2 = ‖x‖21 .
Taking square roots of both sides gives ‖x‖ ≤ ‖x‖1 . For the other inequality, first note that for
any positive numbers a and b,

0 ≤ (a− b)2 = a2 + b2 − 2ab =⇒ 2ab ≤ a2 + b2.

Thus,
‖x‖21 = (|x1|+ |x2|)2

= |x1|2 + |x2|2 + 2 |x2| |x2|

≤ |x1|2 + |x2|2 + |x1|2 + |x2|2

= 2
(
|x1|2 + |x2|2

)
= 2 ‖x‖2 .

Again, taking square roots of both sides shows ‖x‖1 ≤
√

2 ‖x‖ .
(b) Suppose U2 ⊂ R2 is open with respect to d2 = d. If x ∈ U2, then by definition there exists ε > 0

such that
D2(x, ε) =

{
y
∣∣ √(x1 − y1)2 + (x2 − y2)2 < ε

}
⊂ U2.

To show that U2 is open with respect to d1 we must produce an ε′ > 0 such that D1(x, ε
′) ⊂ U2,

and it is sufficient to produce one such that D1(x, ε
′) ⊂ D2(x, ε) ⊂ U2. From part (a) it follows

that
y ∈ D1(x, ε) ⇐⇒ d1(x, y) < ε

=⇒ d2(x, y) ≤ d1(x, y) < ε ⇐⇒ y ∈ D2(x, ε).

Thus D1(x, ε
′) ⊂ D2(x, ε) for ε′ = ε.

In the other direction, suppose U1 ⊂ R2 is open with respect to d1. Given an arbitrary x ∈ U1,
we must find ε′ such that D2(x, ε

′) ⊂ U1 and it suffices to choose ε′ such that D(x, ε′) ⊂ D1(x, ε).
The other direction is similar. To show that a d1 open set U1 is also open with respect to

d2, it suffices to show that, given D1(x, ε) for some ε, we can produce an ε′ > 0 such that
D2(x, ε

′) ⊂ D1(x, ε). From part (a) it follows that

y ∈ D2(x,
1√
2
ε) ⇐⇒ d2(x, y) < 1√

2
ε =⇒ d1(x, y) <

√
2 1√

2
ε = ε ⇐⇒ y ∈ D1(x, ε)

or in other words, D2(x, ε
′) ⊂ D1(x, ε) for ε′ = 1√

2
ε.

�
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Problem 4 (p. 145, #12, #14). Prove the following properties for subsets A and B of a metric
space:

(a) int(int(A)) = int(A).
(b) int(A ∪B) ⊃ int(A) ∪ int(B).
(c) int(A ∩B) = int(A) ∩ int(B).
(d) cl(cl(A)) = cl(A).
(e) cl(A ∩B) ⊂ cl(A) ∩ cl(B).
(f) cl(A ∪B) = cl(A) ∪ cl(B).

Solution.

(a) The interior of an open set is the open set itself, and int(A) is open.
(b) Suppose x ∈ int(A) ∪ int(B). Thus x lies in one and/or the other; without loss of generality

assume x ∈ int(A). Then there exists ε > 0 such that D(x, ε) ⊂ A, and then

D(x, ε) ⊂ A ∪B =⇒ x ∈ int(A ∪B).

(c) Suppose x ∈ int(A)∩ int(B), so that x ∈ int(A) and x ∈ int(B). Then there exist ε, ε′ > 0 such
that

D(x, ε) ⊂ A, D(x, ε′) ⊂ B,

=⇒ D(x,min
{
ε, ε′

}
) ⊂ A ∩B,

which means x ∈ int(A ∩B).
In the other direction, suppose x ∈ int(A ∩B). Then there exists ε > 0 such that D(x, ε) ⊂

A ∩B, thus
D(x, ε) ⊂ A, and D(x, ε) ⊂ B

which means that x ∈ int(A) ∩ int(B).
(d) The remaining three follow from the first three, along with the fact that complements of interiors

are unions and vice versa, and the complement of the closure is the interior of the complement.
Thus

cl(cl(A)) = cl(M \ int(M \A)) = M \ int(int(M \A) = M \ int(M \A) = cl(A).

(e)

cl(A ∩B) = M \ int(M \ (A ∩B)) = M \ int((M \A) ∪ (M \B))

⊂M \ (int(M \A) ∪ int(M \B)) = (M \ int(M \A)) ∩ (M \ int(M \B))

= cl(A) ∩ cl(B).

(f)

cl(A ∪B) = M \ int(M \ (A ∪B)) = M \ int((M \A) ∩ (M \B))

= M \ (int(M \A) ∩ int(M \B)) = (M \ int(M \A)) ∩ (M \ int(M \B))

= cl(A) ∪ cl(B).

�

Problem 5 (p. 143, #1, #2). Determine whether the following sets are open or closed, and each
set find its interior, closure and boundary.

(a) (1, 2) in R1 = R
(b) [2, 3] in R
(c)

⋂∞
n=1[−1, 1/n) in R

(d) Rn in Rn

(e) Rn−1 in Rn
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(f)
{
r ∈ (0, 1)

∣∣ r is rational
}

in R
(g)

{
(x, y) ∈ R2

∣∣ 0 < x ≤ 1
}

in R2

(h)
{
x ∈ Rn

∣∣ ‖x‖ = 1
}

in Rn

(i) {xk ∈ Rn} for a sequence xk in Rn with no repeated terms.

Proof. (a) Open, interior is (1, 2), closure is [1, 2], boundary is {1, 2}.
(b) Closed, interior is (2, 3), closure is [2, 3], boundary is {2, 3} .
(c) The set itself is [−1, 0], so closed, with interior (−1, 0), closure [−1, 0] and boundary {−1, 0}.
(d) Open and closed, interior = closure = Rn, boundary is empty.
(e) Closed, interior empty, closure = boundary = Rn−1.
(f) Neither open nor closed, interior empty, closure is [0, 1], boundary is [0, 1].
(g) Neither open nor closed, interior is

{
(x, y)

∣∣ 0 < x < 1
}

, closure is
{

(x, y)
∣∣ 0 ≤ x ≤ 1

}
, bound-

ary is
{

(x, y)
∣∣ x = 0 or 1

}
.

(h) Closed, interior empty, closure = boundary =
{
x ∈ Rn

∣∣ ‖x‖ = 1
}

.
(i) If all cluster points appear in the sequence, then closed, otherwise neither. Interior empty,

closure and boundary are the union of the sequence with all its cluster points.
�
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