MATH 3150 - HOMEWORK 3

Problem 1 (p. $70, \# 1, \# 3, \# 4)$. This problem concerns the vector space $C([0,1])$ of continuous, real-valued functions $f:[0,1] \longrightarrow \mathbb{R}$, equipped with the inner product and two different norms:

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x, \quad\|f\|_{2}=\sqrt{\langle f, f\rangle}, \quad\|f\|_{\infty}=\sup \{|f(x)|: x \in[0,1]\}
$$

(a) For $f(x)=1$ and $g(x)=x$, find $d(f, g)$ for both the sup norm $\|\cdot\|_{\infty}$ and the L^{2}-norm $\|\cdot\|_{2}$.
(b) Verify the Cauchy-Schwarz inequality for $f(x)=1$ and $g(x)=x$.
(c) Verify the triangle inequality for $f(x)=x$ and $g(x)=x^{2}$ in both norms.

Problem 2 (p. 108, \#4). Let $B \subset \mathbb{R}^{n}$ be any set. Define

$$
C=\left\{x \in \mathbb{R}^{n}: d(x, y)<1 \text { for some } y \in B\right\} .
$$

Show that C is open.
Problem 3 (p. 108, \#6).
(a) In \mathbb{R}^{2}, show that

$$
\|x\| \leq\|x\|_{1} \leq \sqrt{2}\|x\|
$$

where $\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$ is the taxicab norm, and $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ is the usual Euclidean norm.
(b) Use the results of the first part to show that \mathbb{R}^{2} with the taxicab metric $d_{1}(x, y)=\left|x_{1}-y_{1}\right|+$ $\left|x_{2}-y_{2}\right|$ has the same open sets as it does with the standard metric $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$. In other words, show that every set which is open with respect to d is also open with respect to d_{1} and vice versa.

Problem 4 (p. 145, \#12, \#14). Prove the following properties for subsets A and B of a metric space:
(a) $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$.
(b) $\operatorname{int}(A \cup B) \supset \operatorname{int}(A) \cup \operatorname{int}(B)$.
(c) $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$.
(d) $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$.
(e) $\operatorname{cl}(A \cap B) \subset \operatorname{cl}(A) \cap \operatorname{cl}(B)$.
(f) $\operatorname{cl}(A \cup B)=\operatorname{cl}(A) \cup \operatorname{cl}(B)$.

Problem 5 (p. 143, \#1, \#2). Determine whether the following sets are open or closed, and each set find its interior, closure and boundary.
(a) $(1,2)$ in $\mathbb{R}^{1}=\mathbb{R}$
(b) $[2,3]$ in \mathbb{R}
(c) $\bigcap_{n=1}^{\infty}[-1,1 / n)$ in \mathbb{R}
(d) \mathbb{R}^{n} in \mathbb{R}^{n}
(e) \mathbb{R}^{n-1} in \mathbb{R}^{n}
(f) $\{r \in(0,1) \mid r$ is rational $\}$ in \mathbb{R}
(g) $\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x \leq 1\right\}$ in \mathbb{R}^{2}
(h) $\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}$ in \mathbb{R}^{n}
(i) $\left\{x_{k} \in \mathbb{R}^{n}\right\}$ for a sequence x_{k} in \mathbb{R}^{n} with no repeated terms.

