MATH 3150 — HOMEWORK 3

Problem 1 (p. 70, #1, #3, #4). This problem concerns the vector space C([0, 1]) of continuous, real-valued functions $f : [0, 1] \longrightarrow \mathbb{R}$, equipped with the inner product and two different norms:

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \, dx, \quad \|f\|_2 = \sqrt{\langle f,f \rangle}, \quad \|f\|_\infty = \sup\{|f(x)| : x \in [0,1]\}.$$

(a) For f(x) = 1 and g(x) = x, find d(f,g) for both the sup norm $\|\cdot\|_{\infty}$ and the L^2 -norm $\|\cdot\|_2$.

(b) Verify the Cauchy-Schwarz inequality for f(x) = 1 and g(x) = x.

(c) Verify the triangle inequality for f(x) = x and $g(x) = x^2$ in both norms.

Problem 2 (p. 108, #4). Let $B \subset \mathbb{R}^n$ be any set. Define

$$C = \{ x \in \mathbb{R}^n : d(x, y) < 1 \text{ for some } y \in B \}.$$

Show that C is open.

Problem 3 (p. 108, #6).

(a) In \mathbb{R}^2 , show that

$$\|x\| \le \|x\|_1 \le \sqrt{2} \, \|x\|$$

where $||x||_1 = |x_1| + |x_2|$ is the taxicab norm, and $||x|| = \sqrt{x_1^2 + x_2^2}$ is the usual Euclidean norm. (b) Use the results of the first part to show that \mathbb{R}^2 with the taxicab metric $d_1(x, y) = |x_1 - y_1| + |x_2|$

(b) One the results of the line part to blow that it with the standard metric $u_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$ has the same open sets as it does with the standard metric $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$. In other words, show that every set which is open with respect to d is also open with respect to d_1 and vice versa.

Problem 4 (p. 145, #12, #14). Prove the following properties for subsets A and B of a metric space:

(a) $\operatorname{int}(\operatorname{int}(A)) = \operatorname{int}(A)$. (b) $\operatorname{int}(A \cup B) \supset \operatorname{int}(A) \cup \operatorname{int}(B)$. (c) $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$. (d) $\operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A)$. (e) $\operatorname{cl}(A \cap B) \subset \operatorname{cl}(A) \cap \operatorname{cl}(B)$. (f) $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$.

Problem 5 (p. 143, #1, #2). Determine whether the following sets are open or closed, and each set find its interior, closure and boundary.

(a) (1,2) in $\mathbb{R}^1 = \mathbb{R}$ (b) [2,3] in \mathbb{R} (c) $\bigcap_{n=1}^{\infty} [-1, 1/n)$ in \mathbb{R} (d) \mathbb{R}^n in \mathbb{R}^n (e) \mathbb{R}^{n-1} in \mathbb{R}^n (f) $\{r \in (0,1) \mid r \text{ is rational}\}$ in \mathbb{R} (g) $\{(x,y) \in \mathbb{R}^2 \mid 0 < x \le 1\}$ in \mathbb{R}^2 (h) $\{x \in \mathbb{R}^n \mid ||x|| = 1\}$ in \mathbb{R}^n (i) $\{x_k \in \mathbb{R}^n\}$ for a sequence x_k in \mathbb{R}^n with no repeated terms.