MATH 3150 - HOMEWORK 2

Problem 1 (p. 97, \#5). Let x_{n} be a monotone increasing sequence bounded above and consider the set $S=\left\{x_{1}, x_{2}, \ldots\right\}$. Show that x_{n} converges to $\sup (S)$. Make a similar statement for decreasing sequences.

Remark. This shows that the least upper bound property - that every nonempty set with an upper bound has a least upper bound - implies the monotone sequence property - that every monotone increasing bounded sequence bounded above converges. Combined with the reverse implication proved in class, it follows that the least upper bound property is equivalent to completeness.

Solution. S is a set with an upper bound, so it has a supremum

$$
x=\sup (S) .
$$

Let $\varepsilon>0$. By our characterization of the supremum, there is some $x_{N} \in S$ such that $x-\varepsilon<x_{N}$ and since x_{n} is increasing it follows that

$$
\begin{gathered}
x-\varepsilon<x_{n}, \forall n \geq N \\
\Longrightarrow\left|x_{n}-x\right|<\varepsilon \forall n \geq N
\end{gathered}
$$

Thus $\lim _{n \rightarrow \infty} x_{n}=x=\sup (S)$.
If x_{n} is a decreasing sequence bounded below, then x_{n} converges to $\inf \left(\left\{x_{n}\right\}\right)$ by a similar proof.

Problem 2 (p. 97, \#7). For nonempty sets $A, B \subset \mathbb{R}$, let $A+B=\{x+y \mid x \in A$ and $y \in B\}$. Show that $\sup (A+B)=\sup (A)+\sup (B)$.

Solution. Let $a=\sup (A)$ and $b=\sup (B)$. Then since $a \geq x$ for all $x \in A$ and $b \geq y$ for all $y \in B$, it follows that $a+b$ is an upper bound for $A+B$, i.e.

$$
a+b \geq x+y, \forall x+y \in A+B
$$

Let $\varepsilon>0$. Then there is some $x \in A$ and $y \in B$ such that $a-\varepsilon / 2<x$ and $b-\varepsilon / 2<y$, which means that

$$
a+b-\varepsilon<x+y \in A+B
$$

and it follows that $a+b=\sup (A+B)$.
Problem 3 (p. 52, \#4).
(a) Let x_{n} be a Cauchy sequence. Suppose that for every $\varepsilon>0$ there is some $n>1 / \varepsilon$ such that $\left|x_{n}\right|<\varepsilon$. Prove that $x_{n} \longrightarrow 0$.
(b) Show that the hypothesis that x_{n} be Cauchy in (a) is necessary, by coming up with an example of a sequence x_{n} which does not converge, but which has the other property: that for every $\varepsilon>0$ there exists some $n>1 / \varepsilon$ such that $\left|x_{n}\right|<\varepsilon$.

Solution. (a) Let $\varepsilon>0$ be given. Since x_{n} is Cauchy, there exists an N such that $\left|x_{n}-x_{m}\right|<$ $\varepsilon / 2$ for all $m, n \geq N$. If we now let

$$
\varepsilon_{1}=\min (\varepsilon / 2,1 / N)
$$

then it follows from the other assumption that there is a $k>1 / \varepsilon_{1} \geq N$ such that

$$
\left|x_{k}\right|<\varepsilon_{1} \leq \varepsilon / 2
$$

Thus, for $x_{n} \geq N$, we have

$$
\left|x_{n}-0\right|=\left|x_{n}-x_{k}+x_{k}\right| \leq\left|x_{n}-x_{k}\right|+\left|x_{k}\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon,
$$

so that $x_{n} \longrightarrow x$.
(b) Consider the sequence

$$
x_{n}= \begin{cases}1 & n \text { odd } \\ 1 / n & n \text { even } .\end{cases}
$$

This clearly does not converge, and yet for any $\varepsilon>0$ we can choose an even $n>1 / \varepsilon$ for which $\left|x_{n}\right|<\varepsilon$.

Problem 4 (p. $99 \# 15$). Let x_{n} be a sequence in \mathbb{R} such that $\left|x_{n}-x_{n+1}\right| \leq \frac{1}{2}\left|x_{n-1}-x_{n}\right|$. Show that x_{n} is a Cauchy sequence.

Solution. To show that x_{n} is Cauchy, we must compare x_{n} and x_{m} for all $n, m \geq N$ for various N, not just subsequent elements. To do this we first note that for arbitrary $k>0$,

$$
\begin{aligned}
\left|x_{n}-x_{n+k}\right| & =\left|x_{n}-x_{n+1}+x_{n+1}-\cdots-x_{n+k-1}+x_{n+k-1}-x_{n+k}\right| \\
& \leq\left|x_{n}-x_{n+1}\right|+\left|x_{n+1}-x_{n+2}\right|+\cdots+\left|x_{n+k-1}-x_{n+k}\right| \\
& \leq\left|x_{n}-x_{n+1}\right|+\frac{1}{2}\left|x_{n}-x_{n+1}\right|+\frac{1}{4}\left|x_{n}-x_{n+1}\right|+\cdots+\frac{1}{2^{k-1}}\left|x_{n}-x_{n+1}\right| \\
& =\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{k-1}}\right)\left|x_{n}-x_{n+1}\right| \\
& <2\left|x_{n}-x_{n+1}\right| \\
& \leq \frac{2}{2^{n}}\left|x_{0}-x_{1}\right|=\frac{1}{2^{n-1}}\left|x_{0}-x_{1}\right| .
\end{aligned}
$$

Let $M=\left|x_{0}-x_{1}\right| \in \mathbb{R}$. Then for an arbitrary $\varepsilon>0$, we may choose N sufficiently large that $\frac{1}{2^{N-1}}<\frac{\varepsilon}{M}$. (This uses the fact that $1 / 2^{n} \longrightarrow 0$.) Thus for any $n, m \geq N$, supposing that $m \geq n$, we can write $m=n+k$ for some $k \geq 0$ and then

$$
\left|x_{n}-x_{m}\right|=\left|x_{n}-x_{n+k}\right|<\frac{M}{2^{n-1}} \leq \frac{M}{2^{N-1}}<\varepsilon
$$

so x_{n} is Cauchy.
Problem 5. Prove that an Archimedean ordered field in which every Cauchy sequence converges is complete (i.e. has the monotone sequence property). Here are some suggested steps:
(a) Denote the field by \mathbb{F}, and suppose x_{n} is a monotone increasing sequence bounded above by some $M \in \mathbb{F}$.
(b) Proceeding by contradiction, suppose x_{n} is not Cauchy. Deduce the existence of a subsequence $y_{k}=x_{n_{k}}$ with the property that

$$
\begin{equation*}
y_{k} \geq y_{k-1}+\varepsilon, \forall k \tag{1}
\end{equation*}
$$

for some fixed positive number $\varepsilon>0$ which does not depend on k.
(c) Using the Archimedean property, argue that y_{k} cannot be bounded above by M, hence obtaining a contradiction.
(d) Conclude that x_{n} converges.

Proof. Suppose \mathbb{F} is Archimedean and has the property that every Cauchy sequence in \mathbb{F} converges. Let x_{n} be a monotone sequence in \mathbb{F}, with an upper bound M, and suppose that x_{n} is not Cauchy. Then there exists an $\varepsilon>0$ such that, for all $N \in \mathbb{N}$, there is a pair $n, m \geq N$ for which

$$
\left|x_{n}-x_{m}\right| \geq \varepsilon
$$

(This is just the negation of the statement that x_{n} is Cauchy.)
We construct a subsequece as suggested by the hint. Choose $n_{1}=1$ (really it doesn't matter where you start), and by induction suppose that we have $n_{1}<n_{2}<\cdots<n_{k}$ such that $x_{n_{k}} \geq x_{n_{k-1}}+\varepsilon$. Set $N=n_{k}$; then by assumption there is a pair $n_{k+1}, m_{k+1} \geq n_{k}$ (and without loss of generality we can suppose that $n_{k+1}>m_{k+1}$) such that

$$
\begin{aligned}
\left|x_{n_{k+1}}-x_{m_{k+1}}\right| & \geq \varepsilon, \\
\Longrightarrow x_{n_{k+1}} & \geq x_{m_{k+1}}+\varepsilon \\
& \geq x_{n_{k}}+\varepsilon
\end{aligned}
$$

since the sequence is increasing. This completes the induction step and gives a subsequence $y_{k}=x_{n_{k}}$ satisfying (11), where $\varepsilon>0$ is a fixed positive number, per our assumption that x_{n} is not Cauchy.

Let $d=M-y_{1}$ be the distance from the first element of the subsequence to the upper bound for x_{n}. By the Archimedean property of \mathbb{F}, there exists some $N \in \mathbb{N}$ such that

$$
N>d / \varepsilon, \Longleftrightarrow \varepsilon N>d
$$

By the property (1) on the subsequence y_{k}, it follows that

$$
y_{N} \geq y_{1}+N \varepsilon>y_{1}+d=M
$$

Since $y_{N}=x_{n_{N}}$ is an element of the original sequence, this contradicts the assumption that x_{n} is bounded.

Since we reached this conclusion by assuming that our bounded increasing sequence x_{n} was not Cauchy, it follows that x_{n} must be Cauchy, hence convergent by the assumption on \mathbb{F}. Since x_{n} was an arbitrary increasing bounded sequence, it follows that \mathbb{F} has the monotone sequence property.

