
MATH 3150 — HOMEWORK 2

Problem 1 (p. 97, #5). Let xn be a monotone increasing sequence bounded above and con-
sider the set S = {x1, x2, . . .}. Show that xn converges to sup(S). Make a similar statement
for decreasing sequences.

Remark. This shows that the least upper bound property — that every nonempty set with
an upper bound has a least upper bound — implies the monotone sequence property — that
every monotone increasing bounded sequence bounded above converges. Combined with
the reverse implication proved in class, it follows that the least upper bound property is
equivalent to completeness.

Solution. S is a set with an upper bound, so it has a supremum

x = sup(S).

Let ε > 0. By our characterization of the supremum, there is some xN ∈ S such that
x− ε < xN and since xn is increasing it follows that

x− ε < xn, ∀ n ≥ N

=⇒ |xn − x| < ε ∀ n ≥ N

Thus limn→∞ xn = x = sup(S).
If xn is a decreasing sequence bounded below, then xn converges to inf({xn}) by a similar

proof. �

Problem 2 (p. 97, #7). For nonempty sets A,B ⊂ R, let A+B =
{
x + y

∣∣ x ∈ A and y ∈ B
}
.

Show that sup(A + B) = sup(A) + sup(B).

Solution. Let a = sup(A) and b = sup(B). Then since a ≥ x for all x ∈ A and b ≥ y for all
y ∈ B, it follows that a + b is an upper bound for A + B, i.e.

a + b ≥ x + y, ∀ x + y ∈ A + B.

Let ε > 0. Then there is some x ∈ A and y ∈ B such that a− ε/2 < x and b− ε/2 < y,
which means that

a + b− ε < x + y ∈ A + B,

and it follows that a + b = sup(A + B). �

Problem 3 (p. 52, #4).

(a) Let xn be a Cauchy sequence. Suppose that for every ε > 0 there is some n > 1/ε such
that |xn| < ε. Prove that xn −→ 0.

(b) Show that the hypothesis that xn be Cauchy in (a) is necessary, by coming up with an
example of a sequence xn which does not converge, but which has the other property:
that for every ε > 0 there exists some n > 1/ε such that |xn| < ε.
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Solution. (a) Let ε > 0 be given. Since xn is Cauchy, there exists an N such that |xn − xm| <
ε/2 for all m,n ≥ N. If we now let

ε1 = min(ε/2, 1/N)

then it follows from the other assumption that there is a k > 1/ε1 ≥ N such that

|xk| < ε1 ≤ ε/2.

Thus, for xn ≥ N , we have

|xn − 0| = |xn − xk + xk| ≤ |xn − xk|+ |xk| < ε/2 + ε/2 = ε,

so that xn −→ x.
(b) Consider the sequence

xn =

{
1 n odd

1/n n even.

This clearly does not converge, and yet for any ε > 0 we can choose an even n > 1/ε for
which |xn| < ε.

�

Problem 4 (p. 99 #15). Let xn be a sequence in R such that |xn − xn+1| ≤ 1
2
|xn−1 − xn| .

Show that xn is a Cauchy sequence.

Solution. To show that xn is Cauchy, we must compare xn and xm for all n,m ≥ N for
various N , not just subsequent elements. To do this we first note that for arbitrary k > 0,

|xn − xn+k| = |xn − xn+1 + xn+1 − · · · − xn+k−1 + xn+k−1 − xn+k|
≤ |xn − xn+1|+ |xn+1 − xn+2|+ · · ·+ |xn+k−1 − xn+k|
≤ |xn − xn+1|+ 1

2
|xn − xn+1|+ 1

4
|xn − xn+1|+ · · ·+ 1

2k−1 |xn − xn+1|
= (1 + 1

2
+ · · ·+ 1

2k−1 ) |xn − xn+1|
< 2 |xn − xn+1|

≤ 2

2n
|x0 − x1| =

1

2n−1 |x0 − x1| .

Let M = |x0 − x1| ∈ R. Then for an arbitrary ε > 0, we may choose N sufficiently large
that 1

2N−1 < ε
M
. (This uses the fact that 1/2n −→ 0.) Thus for any n,m ≥ N , supposing

that m ≥ n, we can write m = n + k for some k ≥ 0 and then

|xn − xm| = |xn − xn+k| <
M

2n−1 ≤
M

2N−1 < ε,

so xn is Cauchy. �

Problem 5. Prove that an Archimedean ordered field in which every Cauchy sequence
converges is complete (i.e. has the monotone sequence property). Here are some suggested
steps:

(a) Denote the field by F, and suppose xn is a monotone increasing sequence bounded above
by some M ∈ F.
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(b) Proceeding by contradiction, suppose xn is not Cauchy. Deduce the existence of a sub-
sequence yk = xnk

with the property that

yk ≥ yk−1 + ε, ∀ k (1)

for some fixed positive number ε > 0 which does not depend on k.
(c) Using the Archimedean property, argue that yk cannot be bounded above by M , hence

obtaining a contradiction.
(d) Conclude that xn converges.

Proof. Suppose F is Archimedean and has the property that every Cauchy sequence in F
converges. Let xn be a monotone sequence in F, with an upper bound M , and suppose that
xn is not Cauchy. Then there exists an ε > 0 such that, for all N ∈ N, there is a pair
n,m ≥ N for which

|xn − xm| ≥ ε.

(This is just the negation of the statement that xn is Cauchy.)
We construct a subsequece as suggested by the hint. Choose n1 = 1 (really it doesn’t

matter where you start), and by induction suppose that we have n1 < n2 < · · · < nk such
that xnk

≥ xnk−1
+ ε. Set N = nk; then by assumption there is a pair nk+1,mk+1 ≥ nk (and

without loss of generality we can suppose that nk+1 > mk+1) such that∣∣xnk+1
− xmk+1

∣∣ ≥ ε,

=⇒ xnk+1
≥ xmk+1

+ ε

≥ xnk
+ ε

since the sequence is increasing. This completes the induction step and gives a subsequence
yk = xnk

satisfying (1), where ε > 0 is a fixed positive number, per our assumption that xn

is not Cauchy.
Let d = M − y1 be the distance from the first element of the subsequence to the upper

bound for xn. By the Archimedean property of F, there exists some N ∈ N such that

N > d/ε, ⇐⇒ εN > d.

By the property (1) on the subsequence yk, it follows that

yN ≥ y1 + Nε > y1 + d = M,

Since yN = xnN
is an element of the original sequence, this contradicts the assumption that

xn is bounded.
Since we reached this conclusion by assuming that our bounded increasing sequence xn

was not Cauchy, it follows that xn must be Cauchy, hence convergent by the assumption
on F. Since xn was an arbitrary increasing bounded sequence, it follows that F has the
monotone sequence property. �
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