MATH 3150 - HOMEWORK 1

Problem 1. Prove the following proposition.
Proposition. In an ordered field, the following properties hold:
(i) Unique identities. If $a+x=a$ for every a, then $x=0$. If $a \cdot x=a$ for every a, then $x=1$.
(ii) Unique inverses. If $a+x=0$, then $x=-a$. If $a x=1$, then $x=a^{-1}$.
(iii) No divisors of zero. If $x y=0$, then $x=0$ or $y=0$.
(iv) Cancellation for addition. If $a+x=b+x$ then $a=b$. If $a+x \leq b+x$, then $a \leq b$.
(v) Cancellation for multiplication. If $a x=b x$ and $x \neq 0$, then $a=b$. If $a x \geq b x$ and $x>0$, then $a \geq b$.
(vi) $0 \cdot x=0$ for every x.
(vii) $-(-x)=x$ for every x.
(viii) $-x=(-1) \cdot x$ for every x.
(ix) If $x \neq 0$, then $x^{-1} \neq 0$ and $\left(x^{-1}\right)^{-1}=x$.
(x) If $x \neq 0$ and $y \neq 0$, then $x y \neq 0$ and $(x y)^{-1}=x^{-1} y^{-1}$.
(xi) If $x \leq y$ and $0 \leq z$, then $x z \leq y z$. If $x \leq y$ and $z \leq 0$, then $y z \leq x z$.
(xii) If $x \leq 0$ and $y \leq 0$, then $x y \geq 0$. If $x \leq 0$ and $0 \leq y$, then $x y \leq 0$.
(xiii) $0<1$.
(xiv) For any $x, x^{2} \geq 0$.

Problem 2. Give an example of a field with only three elements. Prove that it cannot be made into an ordered field.
Problem 3. Show that $3^{n} / n$! converges to 0 .
Problem 4. Let $x_{n}=\sqrt{n^{2}+1}-n$. Compute $\lim _{n \rightarrow \infty} x_{n}$.

