Math 3150 Final Exam Fall 2014

Name: \qquad

- The exam will last 2 hours.
- There are 8 problems worth 12 points each.
- No notes or other study materials allowed.
- Use the back sides of the test pages for scratch work, or if you need extra space.

1	
2	
3	
4	
5	
6	
7	
8	
Total	

Problem 1. Determine whether the following statements are true or false. If true, provide a proof; if false, provide a counterexample.
(a) Every Lipschitz function is uniformly continuous.
(b) Every Lipschitz function is differentiable.
(c) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, then for any $a<b \in \mathbb{R}$, the set $f^{-1}([a, b])$ is bounded.
(d) If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, then for any $a<b \in \mathbb{R}$, the set $f([a, b])$ is closed.

Problem 2. Determine whether the following statements are true or false. If true, provide a proof; if false, provide a counterexample.
(a) If $A \subset \mathbb{R}^{n}$ is connected, then $\operatorname{bd}(A)$ is connected.
(b) If $A \subset \mathbb{R}^{n}$ is compact, then $\operatorname{bd}(A)$ is compact.
(c) If $A \subset \mathbb{R}^{n}$ is both compact and connected, then $\mathbb{R}^{n} \backslash A$ is connected.
(d) If $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$ are path-connected, then $A \times B \subset \mathbb{R}^{n+m}$ is path-connected.

Problem 3. Let $g(x)=f\left(x^{3}\right)+x$ where $f:[0,1] \longrightarrow \mathbb{R}$ is a differentiable function such that $f(0)=f(1)$. Show that there exists a point $c \in[0,1]$ such that $g^{\prime}(c)=1$.

Problem 4.

(a) Let $p(t)=t^{3}+a t^{2}+b t+c$ be a cubic polynomial with real coefficients $a, b, c \in \mathbb{R}$. Use the Intermediate Value Theorem to show that p has a real root, i.e., there exists $t_{0} \in \mathbb{R}$ such that $p\left(t_{0}\right)=0$.
(b) What can you say about existence of real roots for a polynomial of arbitrary degree $k \in \mathbb{N}$?

Problem 5. Prove the following case of L'Hôpital's rule: Suppose $f:[a, b] \longrightarrow \mathbb{R}$ and $g:[a, b] \longrightarrow \mathbb{R}$ are differentiable at $x_{0} \in(a, b)$, with $f\left(x_{0}\right)=g\left(x_{0}\right)=0$ and $g^{\prime}\left(x_{0}\right) \neq 0$. Then

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} .
$$

Problem 6. Consider the linear map $L: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$, where $L(x, y)=(a x+b y, c x+d y)$. In other words, L is given by multiplication by the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(a) Show that L is Lipschitz, and estimate a Lipschitz constant in terms of a, b, c, and d.
(b) Show that the set $\{L(x, y): 0 \leq x, y \leq 1\} \subset \mathbb{R}^{2}$ is compact.

Problem 7. This problem concerns the integral $\int_{0}^{1} x d x$.
(a) For a fixed n, let P_{n} be the partition $\left\{0=x_{0}<\cdots<x_{n}=1\right\}$ of [0, 1] into n equal intervals, so that $x_{i}=\frac{i}{n}$. Compute the upper and lower sums $U\left(x,[0,1], P_{n}\right)$ and $L\left(x,[0,1], P_{n}\right)$.
(b) Show that $\lim _{n \rightarrow \infty} U\left(x,[0,1], P_{n}\right)=\lim _{n \rightarrow \infty} L\left(x,[0,1], P_{n}\right)=\frac{1}{2}$.
(c) Using the results of parts (a) and (b), deduce that $f(x)=x$ is integrable on $[0,1]$ and $\int_{0}^{1} x d x=\frac{1}{2}$.

Problem 8. Consider the sequence f_{k} in the space $\mathcal{C}([-1,1] ; \mathbb{R})$ of continuous functions, where

$$
f_{k}(x)=\frac{e^{k x}}{1+e^{k x}}
$$

Does f_{k} converge in $\mathcal{C}([-1,1] ; \mathbb{R})$?

