MATH 3150 FINAL EXAM PRACTICE PROBLEMS - FALL 2013

Problem 1.

(a) Give an example of a connected set $A \subset \mathbb{R}^{n}$ such that $\mathbb{R}^{n} \backslash A$ is not connected.
(b) Give an example of a compact set $K \subset \mathbb{R}^{n}$ which is not connected.

Solution.

(a) $A=\left\{x \in \mathbb{R}^{n}: 1 \leq\|x\| \leq 2\right\}$.
(b) $K=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right.$ or $\left.2 \leq\|x\| \leq 3\right\}$.

Problem 2. Let $f: A \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function and let $G=\{(x, f(x)): x \in A\} \subset$ \mathbb{R}^{2} be its graph.
(a) Show that $G \subset \mathbb{R}^{2}$ is closed.
(b) If A is path-connected, show that G is path-connected. (Updated to path-connected 10 pm on $12 / 4)$.
(c) If A is compact, show that G is compact.

Solution.

(a) It suffices to show that if an arbitrary sequence in G converges, then its limit lies in G. Suppose then that $\left(x_{k}, f\left(x_{k}\right)\right) \longrightarrow(x, y)$. In particular $x_{k} \longrightarrow x$, and since f is continuous, $f\left(x_{k}\right) \longrightarrow f(x)$, so $y=f(x)$ and $(x, y)=(x, f(x))$ is therefore a point in G.
(b) Let $(x, f(x))$ and $(y, f(y))$ be two points in G. Since A is path-connected, there exists a continuous path $\gamma:[a, b] \longrightarrow A$ such that $\gamma(a)=x$ and $\gamma(b)=y$, and then $\widetilde{\gamma}:[a, b] \longrightarrow$ $\mathbb{R}^{2}, \widetilde{\gamma}(t)=(\gamma(t), f(\gamma(t)))$ is a path in G from $(x, f(x))$ to $(y, f(y))$.
(c) We use sequential compactness. Suppose $\left(x_{k}, f\left(x_{k}\right)\right)$ is a sequence in G, so in particular x_{k} is a sequence in A. Since A is sequentially compact, there is a convergent subsequence $x_{k_{n}} \longrightarrow x \in A$. Since f is continuous, $f\left(x_{k_{n}}\right) \longrightarrow f(x)$ so therefore $\left(x_{k_{n}}, f\left(x_{k_{n}}\right)\right)$ is a convergent subsequence with limit $(x, f(x)) \in G$.

Problem 3. Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$.
(a) If A and B are path connected, show that $A \times B \subset \mathbb{R}^{n+m}$ is path connected.
(b) If A and B are compact, show that $A \times B \subset \mathbb{R}^{n+m}$ is compact.

Solution.

(a) If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are points in $A \times B$, then there exist continuous paths $\gamma_{1}:[a, b] \longrightarrow$ A and $\gamma_{2}:[a, b] \longrightarrow B$ such that $\gamma_{i}(a)=x_{i}, \gamma_{i}(b)=y_{i}$ for $i=1,2$. Then

$$
\widetilde{\gamma}:[a, b] \longrightarrow A \times B, \widetilde{\gamma}(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)
$$

is a continuous path from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$.
(b) See HW6, \#5.

Problem 4. Show that $f(x)=x^{2}$ is uniformly continuous on the open interval $(-1,2)$.
Solution. $f(x)$ is continuous, and restricted to a closed and bounded (hence compact) interval, say $[-1,2]$, it is uniformly continuous. But then it is uniformly continuous on any subset thereof, such as $(-1,2)$.

Alternatively, you can give a direct $\varepsilon-\delta$ proof.
Problem 5. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

(a) Show that f is continuous, and uniformly continuous on $[-1,1]$.
(b) Show that f is not differentiable at $x=0$.

Solution.

(a) f is continuous at any $x \neq 0$ since there it is the product of the continuous function x and the composition of the continuous functions $\sin (x)$ and $1 / x$.

At $x=0$ we must show that

$$
\lim _{x \rightarrow 0} f(x)=f(0)=0
$$

We will show that $\lim _{x \rightarrow 0}|f(x)|=0$ which implies the above.

$$
\lim _{x \rightarrow 0}|f(x)|=\lim _{x \rightarrow 0}|x|\left|\sin \left(\frac{1}{x}\right)\right| \leq \lim _{x \rightarrow 0}|x|=0
$$

since \sin is bounded by 1 in absolute value.
Then f is uniformly continuous on any compact set, such as $[-1,1]$ since this is true for any continuous function.
(b) The limit of the difference quotient

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)
$$

does not exist. Therefore f is not differentiable at $x=0$.

Problem 6. Let $f(x)=\int_{0}^{x^{2}} e^{\sqrt{t}} d t$ for $x \in[0,+\infty)$.
(a) Compute $f(0)$.
(b) Show that f is differentiable on $(0,+\infty)$ and compute $f^{\prime}(x)$.

Solution.
(a) $f(0)=\int_{0}^{0} e^{\sqrt{t}} d t=0$ since the interval of integration has width 0 .
(b) The integrand, $t \longmapsto e^{\sqrt{t}}$, is a continuous function on $[0,+\infty)$ and therefore by the fundamental theorem of calculus,

$$
F(y)=\int_{0}^{y} e^{\sqrt{t}} d t
$$

is differentiable with derivative $F^{\prime}(y)=e^{\sqrt{y}}$. Now $f=F \circ g$ where $g(x)=x^{2}$, so using the chain rule,

$$
f^{\prime}(x)=e^{\sqrt{g(x)}} g^{\prime}(x)=2 x e^{x} .
$$

Problem 7. Define $f:[0,1] \longrightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2 & x \neq \frac{1}{2} \\ 0 & x=\frac{1}{2}\end{cases}
$$

Show that f is integrable and compute $\int_{0}^{1} f(x) d x$.
Solution. It suffices to show that for any $\varepsilon>0$, there exists a partition P of $[0,1]$ such that

$$
U(f,[0,1], P)-L(f,[0,1], P)<\varepsilon
$$

since this implies that $\sup _{P}\{L(f,[0,1], P)\}$ and $\inf _{P}\{U(f,[0,1], P)\}$ - the lower and upper integrals, respectively - are equal.

For any partition $P=\left\{0=x_{0}<x_{1}<\cdots<x_{N}=1\right\}$, the upper integral is

$$
U(f,[0,1], P)=\sum_{i=1}^{N} \sup _{\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)=2 \sum_{i=1}^{N}\left(x_{i}-x_{i-1}\right)=2,
$$

and the lower integral is

$$
L(f,[0,1], P)=\sum_{i=1}^{N} \inf _{\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)=2 \sum_{1 / 2 \notin\left[x_{i-1}, x_{i}\right]}\left(x_{i}-x_{i-1}\right)+0 \cdot\left(x_{j}-x_{j-1}\right)
$$

where $\left[x_{j-1}, x_{j}\right]$ is the interval of P which contains the point $x=\frac{1}{2}$. Thus

$$
L(f,[0,1], P)=2\left(1-\left(x_{j}-x_{j-1}\right)\right)
$$

Thus given any $\varepsilon>0$, we may choose a partition such that the interval $\left[x_{j-1}, x_{j}\right]$ containing $x=1 / 2$ has width $\left(x_{j}-x_{j-1}\right)<\varepsilon / 2$. For such a partition P,

$$
U(f,[0,1], P)-L(f,[0,1], P)<2-2(1-\varepsilon / 2)=\varepsilon .
$$

Thus f is integrable. Then

$$
\int_{0}^{1} f(x) d x=\overline{\int_{0}^{1}} f(x) d x=2
$$

since the upper sums $U(f,[0,1], P)$ are all equal to 2 so their infimum is 2 .
Problem 8. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies

$$
|f(x)-f(y)| \leq C|x-y|^{2}, \quad \forall x, y \in \mathbb{R}
$$

for some $C \geq 0$. Show that f must be constant. [Hint: show that it is differentiable first.] Solution. By assumption, the limit

$$
\lim _{x \rightarrow y} \frac{|f(x)-f(y)|}{|x-y|} \leq \lim _{x \rightarrow y} C|x-y|=0
$$

which implies that

$$
\lim _{x \rightarrow y} \frac{f(x)-f(y)}{x-y}=0
$$

and therefore f is differentiable at all $y \in \mathbb{R}$ with derivative $f^{\prime}(y)=0$. Since the derivative vanishes identically, f must be constant.

Problem 9. Suppose $f:[0,+\infty) \longrightarrow \mathbb{R}$ is continuous and differentiable on $(0,+\infty)$, and suppose that

$$
f(x)+x f^{\prime}(x) \geq 0, \quad \forall x>0 .
$$

Show that $f(x) \geq 0$ for all $x \geq 0$. [Hint: consider the function $g(x)=x f(x)$.]
Solution. If we define $g(x)=x f(x)$, then by the product rule,

$$
g^{\prime}(x)=f(x)+x f^{\prime}(x) \geq 0, \quad \forall x>0 .
$$

Thus g is increasing on $(0,+\infty)$. Furthermore,

$$
g(0)=0 \cdot f(0)=0
$$

so it follows that $g(x) \geq 0$ for $x>0$.
Now, $f(x)=g(x) / x$ implies that $f(x) \geq 0$ for $x>0$ since $1 / x$ is positive there, and finally

$$
\lim _{x \rightarrow 0} f(x) \geq 0
$$

since the limit of a non-negative function is nonnegative. Thus $f(x) \geq 0$ for all $x \in[0, \infty)$.

