
MATH 3150 FINAL EXAM PRACTICE PROBLEMS – FALL 2013

Problem 1.

(a) Give an example of a connected set A ⊂ Rn such that Rn \ A is not connected.
(b) Give an example of a compact set K ⊂ Rn which is not connected.

Solution.

(a) A = {x ∈ Rn : 1 ≤ ‖x‖ ≤ 2}.
(b) K = {x ∈ Rn : ‖x‖ ≤ 1 or 2 ≤ ‖x‖ ≤ 3} .

�

Problem 2. Let f : A ⊂ R −→ R be a continuous function and letG = {(x, f(x)) : x ∈ A} ⊂
R2 be its graph.

(a) Show that G ⊂ R2 is closed.
(b) If A is path-connected, show that G is path-connected. (Updated to path-connected

10pm on 12/4).
(c) If A is compact, show that G is compact.

Solution.

(a) It suffices to show that if an arbitrary sequence in G converges, then its limit lies in
G. Suppose then that

(
xk, f(xk)

)
−→ (x, y). In particular xk −→ x, and since f is

continuous, f(xk) −→ f(x), so y = f(x) and (x, y) =
(
x, f(x)

)
is therefore a point in G.

(b) Let
(
x, f(x)

)
and

(
y, f(y)

)
be two points in G. Since A is path-connected, there exists a

continuous path γ : [a, b] −→ A such that γ(a) = x and γ(b) = y, and then γ̃ : [a, b] −→
R2, γ̃(t) =

(
γ(t), f(γ(t))

)
is a path in G from

(
x, f(x)

)
to
(
y, f(y)

)
.

(c) We use sequential compactness. Suppose
(
xk, f(xk)

)
is a sequence in G, so in particular

xk is a sequence in A. Since A is sequentially compact, there is a convergent subsequence
xkn −→ x ∈ A. Since f is continuous, f(xkn) −→ f(x) so therefore

(
xkn , f(xkn)

)
is a

convergent subsequence with limit
(
x, f(x)

)
∈ G.

�

Problem 3. Let A ⊂ Rn and B ⊂ Rm.

(a) If A and B are path connected, show that A×B ⊂ Rn+m is path connected.
(b) If A and B are compact, show that A×B ⊂ Rn+m is compact.

Solution.

(a) If (x1, y1) and (x2, y2) are points in A×B, then there exist continuous paths γ1 : [a, b] −→
A and γ2 : [a, b] −→ B such that γi(a) = xi, γi(b) = yi for i = 1, 2. Then

γ̃ : [a, b] −→ A×B, γ̃(t) =
(
γ1(t), γ2(t)

)
is a continuous path from (x1, y1) to (x2, y2).

(b) See HW6, #5.

�
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Problem 4. Show that f(x) = x2 is uniformly continuous on the open interval (−1, 2).

Solution. f(x) is continuous, and restricted to a closed and bounded (hence compact) inter-
val, say [−1, 2], it is uniformly continuous. But then it is uniformly continuous on any subset
thereof, such as (−1, 2).

Alternatively, you can give a direct ε–δ proof. �

Problem 5. Define f : R −→ R by

f(x) =

{
x sin

(
1
x

)
x 6= 0

0 x = 0.

(a) Show that f is continuous, and uniformly continuous on [−1, 1].
(b) Show that f is not differentiable at x = 0.

Solution.

(a) f is continuous at any x 6= 0 since there it is the product of the continuous function x
and the composition of the continuous functions sin(x) and 1/x.

At x = 0 we must show that

lim
x→0

f(x) = f(0) = 0.

We will show that limx→0 |f(x)| = 0 which implies the above.

lim
x→0
|f(x)| = lim

x→0
|x|
∣∣sin ( 1

x

)∣∣ ≤ lim
x→0
|x| = 0

since sin is bounded by 1 in absolute value.
Then f is uniformly continuous on any compact set, such as [−1, 1] since this is true

for any continuous function.
(b) The limit of the difference quotient

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x sin
(
1
x

)
x

= lim
x→0

sin
(
1
x

)
does not exist. Therefore f is not differentiable at x = 0.

�

Problem 6. Let f(x) =
∫ x2

0
e
√
t dt for x ∈ [0,+∞).

(a) Compute f(0).
(b) Show that f is differentiable on (0,+∞) and compute f ′(x).

Solution.

(a) f(0) =
∫ 0

0
e
√
t dt = 0 since the interval of integration has width 0.

(b) The integrand, t 7−→ e
√
t, is a continuous function on [0,+∞) and therefore by the

fundamental theorem of calculus,

F (y) =

∫ y

0

e
√
t dt

is differentiable with derivative F ′(y) = e
√
y. Now f = F ◦ g where g(x) = x2, so using

the chain rule,

f ′(x) = e
√

g(x)g′(x) = 2xex. �
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Problem 7. Define f : [0, 1] −→ R by

f(x) =

{
2 x 6= 1

2

0 x = 1
2
.

Show that f is integrable and compute
∫ 1

0
f(x) dx.

Solution. It suffices to show that for any ε > 0, there exists a partition P of [0, 1] such that

U(f, [0, 1], P )− L(f, [0, 1], P ) < ε

since this implies that supP {L(f, [0, 1], P )} and infP {U(f, [0, 1], P )}— the lower and upper
integrals, respectively — are equal.

For any partition P = {0 = x0 < x1 < · · · < xN = 1}, the upper integral is

U(f, [0, 1], P ) =
N∑
i=1

sup
[xi−1,xi]

f(x)(xi − xi−1) = 2
N∑
i=1

(xi − xi−1) = 2,

and the lower integral is

L(f, [0, 1], P ) =
N∑
i=1

inf
[xi−1,xi]

f(x)(xi − xi−1) = 2
∑

1/2/∈[xi−1,xi]

(xi − xi−1) + 0 · (xj − xj−1)

where [xj−1, xj] is the interval of P which contains the point x = 1
2
. Thus

L(f, [0, 1], P ) = 2(1− (xj − xj−1)).
Thus given any ε > 0, we may choose a partition such that the interval [xj−1, xj] containing

x = 1/2 has width (xj − xj−1) < ε/2. For such a partition P ,

U(f, [0, 1], P )− L(f, [0, 1], P ) < 2− 2(1− ε/2) = ε.

Thus f is integrable. Then ∫ 1

0

f(x) dx =

∫ 1

0

f(x) dx = 2

since the upper sums U(f, [0, 1], P ) are all equal to 2 so their infimum is 2. �

Problem 8. Suppose f : R −→ R satisfies

|f(x)− f(y)| ≤ C |x− y|2 , ∀x, y ∈ R
for some C ≥ 0. Show that f must be constant. [Hint: show that it is differentiable first.]

Solution. By assumption, the limit

lim
x→y

|f(x)− f(y)|
|x− y|

≤ lim
x→y

C |x− y| = 0

which implies that

lim
x→y

f(x)− f(y)

x− y
= 0

and therefore f is differentiable at all y ∈ R with derivative f ′(y) = 0. Since the derivative
vanishes identically, f must be constant. �
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Problem 9. Suppose f : [0,+∞) −→ R is continuous and differentiable on (0,+∞), and
suppose that

f(x) + x f ′(x) ≥ 0, ∀x > 0.

Show that f(x) ≥ 0 for all x ≥ 0. [Hint: consider the function g(x) = xf(x).]

Solution. If we define g(x) = x f(x), then by the product rule,

g′(x) = f(x) + x f ′(x) ≥ 0, ∀x > 0.

Thus g is increasing on (0,+∞). Furthermore,

g(0) = 0 · f(0) = 0

so it follows that g(x) ≥ 0 for x > 0.
Now, f(x) = g(x)/x implies that f(x) ≥ 0 for x > 0 since 1/x is positive there, and finally

lim
x→0

f(x) ≥ 0

since the limit of a non-negative function is nonnegative. Thus f(x) ≥ 0 for all x ∈ [0,∞).
�
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