MATH 3150 FINAL EXAM PRACTICE PROBLEMS - FALL 2013

Problem 1.

(a) Give an example of a connected set $A \subset \mathbb{R}^{n}$ such that $\mathbb{R}^{n} \backslash A$ is not connected.
(b) Give an example of a compact set $K \subset \mathbb{R}^{n}$ which is not connected.

Problem 2. Let $f: A \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function and let $G=\{(x, f(x)): x \in A\} \subset$ \mathbb{R}^{2} be its graph.
(a) Show that $G \subset \mathbb{R}^{2}$ is closed.
(b) If A is path-connected, show that G is path-connected.
(c) If A is compact, show that G is compact.

Problem 3. Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$.
(a) If A and B are path connected, show that $A \times B \subset \mathbb{R}^{n+m}$ is path connected.
(b) If A and B are compact, show that $A \times B \subset \mathbb{R}^{n+m}$ is compact.

Problem 4. Show that $f(x)=x^{2}$ is uniformly continuous on the open interval $(-1,2)$.
Problem 5. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

(a) Show that f is continuous, and uniformly continuous on $[-1,1]$.
(b) Show that f is not differentiable at $x=0$.

Problem 6. Let $f(x)=\int_{0}^{x^{2}} e^{\sqrt{t}} d t$ for $x \in[0,+\infty)$.
(a) Compute $f(0)$.
(b) Show that f is differentiable on $(0,+\infty)$ and compute $f^{\prime}(x)$.

Problem 7. Define $f:[0,1] \longrightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2 & x \neq \frac{1}{2} \\ 0 & x=\frac{1}{2}\end{cases}
$$

Show that f is integrable and compute $\int_{0}^{1} f(x) d x$.
Problem 8. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies

$$
|f(x)-f(y)| \leq C|x-y|^{2}, \quad \forall x, y \in \mathbb{R}
$$

for some $C \geq 0$. Show that f must be constant. [Hint: show that it is differentiable first.]
Problem 9. Suppose $f:[0,+\infty) \longrightarrow \mathbb{R}$ is continuous and differentiable on $(0,+\infty)$, and suppose that

$$
f(x)+x f^{\prime}(x) \geq 0, \quad \forall x>0
$$

Show that $f(x) \geq 0$ for all $x \geq 0$. [Hint: consider the function $g(x)=x f(x)$.]

