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ref21Ler.nmaIf a group G has a subgroup H ofindex in
then G also has a normalsubgroup N Contained in A
Such that the index of N divides n
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Proof Consider the group action ofG on theset

left cosets of H
by left multiplication
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Corollary let a be a fruit group and let p
be the smallest poine dividing the order ofG
Then every subgroup HSG of index p
is normal
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Proof let NEH be the normal subgroupofG
constructed in the Lemma Then
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AYE If G is a pgroup cone IGI p
and It is a subgroup of index p then HOG
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2 If H and K are subgroups ofG we call
HK the product ofthesesubgroups
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two subgroups notnormalthen HK C CID CID 423 not a subgroup
since 2351 432 Hk or since
I HRI 4 6 so byLagrange HktG

On theotherhand if is abelian then the product
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denoted Htt is a subgroup of6
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