$$\frac{Group Theory}{Week \#4, Ledwe H}$$
Basic tool we diversed last time was the fundamental Theorem of Homomorphisms:
short version: $\varphi: G \rightarrow G'$ kom. $\Rightarrow [g/_{Eer(\varphi)} \Rightarrow im(\varphi)]$
more precise decim: Every hom. $\varphi: G \rightarrow G'$ factors through an iso $[\overline{\varphi}: g/_{Eer(\varphi)} \rightarrow im(\varphi)]$, where $\overline{\varphi}(x; ker(\varphi)) = \varphi(x)$.
Earther remarks:
(1) Every morival subgroup N dG occurs as the kervel of a homomorphism from 6 to enother group.
That a canonical projection of φ into the factor group.
The canonical projection of φ into the factor group.
Then ker(π) = N (as we saw Cart time).
Hence: $[N = ker(\pi: G \rightarrow Q_N)]$
(2) Recall that the index of a subgroup H<6
is defined as $[G:H] := H \ g \ left cost of H \ in G \ more more more more more proven is finite, then, by Legrange's theorem: $[G:H] = [G_1]$
How suppose N ΔG is a normal subgroup, i.e., left β right cost of N $\Delta \beta$.
Thus $[G:H] = [G_1]$$

 $\overline{}$

in words: If the index of N in 6 is the order of
the factor group G/N.
For finite groups (and their words subgrass),
Lagrange's theorem can also be written as

$$\frac{|[G/N| = \frac{|G||}{|N||}}{|G||}$$
Example (Problem #24, § 3.8)
Let $G = \begin{cases} \binom{10}{cd} : c, d \in \mathbb{Z}_{5} \\ d \neq 0 \end{cases} \leq GL_{2}(\mathbb{Z}_{5})$
and $N = \begin{cases} A \in G \ [ddtA = I_{4}] = \\ f(c_{1}) : cd_{5} \\ d \neq 0 \end{cases}$
(1) Show that $N \leq G$.
(2) Identify G/N .
(3) Show that $N \leq G$.
(4) Identify G/N .
(5) once we show that $N \leq G$.
(6) Serventions: $|G| = 5 \cdot 4 = 20$
 $N = \begin{cases} f(h) = \frac{16}{2} = \frac{16}{2} = \frac{16}{2} = \frac{29}{4} = \frac{16}{2} = \frac{29}{4} = \frac{16}{2} = \frac{29}{4} = \frac{16}{2} = \frac{16}{2} = \frac{29}{4} = \frac{16}{2} =$

(2) By shorter proof of (1) and FTH:

$$6/N \cong in (det: G \rightarrow Z_{5}^{\times})$$

 $= Z_{5}^{\times} \cong Z_{4}$

Example (Poolem #10, \$3.8)
Let NAG and suppose
$$[G:N] = m$$
. Show that
 $a^m \in N$, for all $a \in G$

Solution: Note that
$$|G/N| = [G:N] = m$$

Now consider the (eft) uset an in G/N . Then,
by a corollary to Lagrange's theorem:
 $(aN)^m = N$ (in general, if 161 is think
and $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, then $O(G) | 161$,
 $x \in G$, $x \in G$, $x \in G$, $x \in G$, $x \in G$, $x \in G$,
 $M < G$. $x \in G$, $M = m$ $\xrightarrow{?}$ $a^m \in H$, the G
The Center of a group
Def the center of a group
 $M < G := \{x \in G : gx = xg, \forall g \in G\}$

Lemma Z(6) às a mormal Subgroup of G.

$$\frac{\operatorname{Pruf} \neq \mathbb{Z}(\mathfrak{h}) \text{ is a subgroup:}}{\mathfrak{g}(\mathfrak{h}) = \mathbb{Z}(\mathfrak{h}) =$$

Let it be a subgroup of
$$Z(G)$$
.
(A) show that is a normal subgroup of G
(b) If G/N is cyclic, then G is abelian
Solution (a) let $x \in N$ and $g \in G$. Then
 $g \times g^{-1} = gg^{-1} \times = e \cdot x = x \in N$
 $x \in N \in \mathcal{R}(G)$
(b) Suppose G/N is cyclic, that is:
 $[G/N = \langle aN \rangle]$, for some acf
Let $x, y \in G$. Then
 $\int X = \langle aN \rangle^k = a^k N$, for some $a \in G$
 $(g = \langle aN \rangle)^e = a^k N$
 $\Rightarrow \int X = a^k \cdot u$, for some $m, v \in N$
Hence:
 $X = a^k \cdot u$, for some
 $(g = a^k \cdot u)$, for