Group Theory
Week \#4, Lecture 14
Basic tool we discussed last time was the Fundamental Theorem of Homomorphisms:
shot version: $\quad \varphi: G \longrightarrow G^{\prime}$ nom. $\Rightarrow G / \operatorname{ker}(\varphi) \cong \operatorname{im}(\varphi)$ more precise Version: Every how. $\varphi: G \rightarrow G^{\prime}$ factors through an iso $\bar{\varphi}: \varphi / \operatorname{ker}(\varphi) \longrightarrow$ in (φ), where

$$
\bar{\varphi}(x \cdot \operatorname{ker}(\varphi))=\varphi(x)
$$

Further remarks:
(1) Every normal subgroup $N \triangleleft G$ occurs as the kernel of a homomorphism from G to another group.
Indeed, let $\pi: G \longrightarrow G / N, \pi(x)=x N$ be the canonical projection of G in to the factor grasp. Then $\operatorname{ker}(\pi)=N$ (as we saw last time). Hence:

$$
M=\operatorname{ker}(\pi: G \rightarrow C / N)
$$

(2) Recall that the inolex of a subgroup $H<G$ is defined as

$$
[G: H]:=\#\{\text { left corsets of Hin G\} ~ }
$$

Furthermore, if G is finite, then, by Lagrange's
Theorem:

$$
\int[G: H]=\frac{|G|}{|H|}
$$

Now suppose $N \Delta G$ is a normal subgroup, ie., left \& right coset of N coincide.
Then
$[G: N]=|G / N| \$$ the left coset of NiM
in wools: The index of N in G is the oroler of the traction group G/N.
Fur finite groups (and their nomal sulgraps), Lagrange's theorem can also be wirtien as

$$
|G / N|=\frac{|G|}{|N|}
$$

or $\quad|G|=|N| \cdot|G / N|$
Example (Problem \#24, \&3.8)
Let $G=\left\{\left(\begin{array}{ll}1 & 0 \\ c & d\end{array}\right): \begin{array}{ll}c, & d \in \mathbb{Z}_{5} \\ d \neq 0\end{array}\right\}<G L_{2}\left(\mathbb{Z}_{5}\right)$ and $N=\left\{A \in G \left\lvert\, \operatorname{det} A=R=\left\{\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right): c \in \mathbb{Z}_{S}\right\}\right.\right.$
(I) Show that $N \triangleleft G$.
$\frac{\text { (2) Identify } G / N .}{\text { observation: }|G|=5 \cdot 4}=20$

ute: $\left\|G L_{2}(25)\right\|=$	
$\left(5^{2}-1\right) \cdot\left(5^{2}-5\right)$	
	$=24.20$
	$=480$

$$
\begin{aligned}
& =24.20 \\
& =480
\end{aligned}
$$

- $|N|=5$
- So, once we shout that NAG, we know that

$$
\begin{array}{ll}
& |G / M|=\frac{|G|}{|1|}=\frac{20}{5}=4 \\
\therefore & G / N \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \text { or } \mathbb{Z}_{4}
\end{array}
$$

(1) "Brute force" computation:

Shorter proof: $\quad M=\operatorname{ker}\left(\operatorname{det}: G \longrightarrow \mathbb{Z}_{5}^{x}\right)$

$$
\text { so } N \triangleleft G \quad \operatorname{det}\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)=-d
$$

$$
\begin{aligned}
& \operatorname{Bin} G \quad A \operatorname{inN} \underbrace{1}_{\hat{B}-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \in N
\end{aligned}
$$

(2) By shorter proof of (1) and FTH:

$$
\begin{aligned}
G / T & \cong \operatorname{im}\left(\operatorname{det}: G \rightarrow \mathbb{Z}_{5}^{x}\right) \\
& =\mathbb{Z}_{5}^{x} \cong \mathbb{Z}_{4}
\end{aligned}
$$

Example (Problem \#10, \&3.8)
Let $N \triangleleft G$ and suppose $[G: N]=m$. Show that $a^{m} \in N$, for all $a \in G$
Solution: Note that $|G / N|=[G: N]=m$
Now consider the (left) coset aN in G / N. Then, by a corollary to Lagrange's theorem:
$\left(\begin{array}{c}\left.\text { Since } \begin{array}{c}X N \cdot Y N \\ \text { AVN }\end{array}\right) \rightarrow \mid \\ a^{m} N\end{array}\right.$

$$
\left(\begin{array}{l}
\text { in genera, if }|G| \text { is tint } \\
\text { and } x \in G \text {, then } O(x)||G|, \\
\text { so } x^{|G|}=e
\end{array}\right.
$$

$$
\therefore \quad a^{m} \in N
$$

Question What happens of we olrop the assumption that N is normal in G ? i.e.,

$$
H<G . \&[a: H]=m \stackrel{?}{\Longrightarrow} a^{m} \in H, \forall a \in G
$$

The Center of a group
Def The center of a group G is

$$
\text { (zentrum) } \rightarrow \nrightarrow z(G):=\{x \in G: g x=x g, \forall g \in G\}
$$

Lemma $Z(G)$ is a normal Subgroup of G.

Proof $z \mathcal{Z}(G)$ is a sub group:
(a)

$$
\begin{aligned}
& \underset{\substack{x \in G}}{x, y \in z(G)} \Rightarrow(x y) \cdot g_{\substack{\text { a ssue }}}=x(y g)=x(s y) \\
& \stackrel{\stackrel{a}{a_{1} s c}}{=}(x g) y \underset{x \in z}{y \in z}=(y x) y=g(x y) \\
& \therefore \quad x y \in z(G) \\
& \underset{y \in G}{x \in Z} \rightarrow g \times g^{-1} \frac{1}{\hat{p}} \underset{\uparrow}{\Rightarrow} g x^{-1} g^{-1}=x^{-1}
\end{aligned}
$$

since $g x=x g$ the merres on both sides

$$
\therefore g x^{-1}=x^{-1} g
$$

Z is normal

$$
\begin{array}{ll}
x \in Z \tag{QED}\\
g \in G
\end{array} \quad \Longrightarrow g x=x g \Rightarrow g \times g^{-1}=x \in Z
$$

Examples (1) G abelian $\Rightarrow Z(G)=G$

$$
\begin{aligned}
& \text { (2) } \\
& G=Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\} \\
& \binom{i=j^{2}=h^{2}=-1}{i j=j k=k i} \\
& =\{1,-1\} \\
& i j=j k=k i \\
& j i=-i j \text {, ete } \\
& \cong \mathbb{Z}_{2} \\
& G=G L_{2}(F) \quad, \quad F \text { a field } \\
& \text { gronps } \\
& =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in F, a d-b c \neq 0\right\}
\end{aligned}
$$

Lemma $Z(G)=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right): \quad x \in F^{x}\right\}$
check: (3) $\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}x^{-1} & 0 \\ 0 & x^{-1}\end{array}\right)=x \cdot x^{-1} \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}a k \\ e & d\end{array}\right)$
(c) Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in Z(G)$. Then:

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \left(\begin{array}{ll}
a & a+b \\
c & c+d
\end{array}\right)=\left(\begin{array}{cc}
a+c & b+d \\
c & d
\end{array}\right) \Rightarrow\left\{\begin{array} { l l }
{ a = a + c } \\
{ a + b } & { = b + d } \\
{ c + d } & { = d }
\end{array} \Rightarrow \left\{\begin{array}{l}
c=0 \\
a=d
\end{array}\right.\right.
\end{aligned}
$$

So A must be of the form $A=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$
But A must also commute with $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$:

$$
\begin{align*}
\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) & =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \\
\left(\begin{array}{cc}
a+b & b \\
a & a
\end{array}\right) & =\left(\begin{array}{ll}
a & b \\
a & b+a
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
a+b=a \\
a=b+a
\end{array} \Rightarrow b=0\right. \\
\therefore \quad A & =\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \tag{QED}
\end{align*}
$$

Define $\int_{A}^{\mid P G L_{2}}(F):=G L_{2}(F) / Z\left(G L_{2}(F)\right)$
projective general linear group of 2×2

$$
\begin{aligned}
& \text { In pationlar: } P G L_{2}\left(\mathbb{Z}_{p}\right)=G L_{2}\left(\mathbb{Z}_{p}\right) / \text { canter } \quad \text { (p poring) } \\
& \left.P=2 \quad G=G L_{2}\left(\mathbb{Z}_{2}\right)=\left\{\begin{array}{ll}
a & b \\
c & 1
\end{array}\right): a, b c d \in \mathbb{C}_{2}, a d+b c=1\right\}
\end{aligned}
$$

has order $\left(2^{2}-1\right)\left(2^{2}-2\right)=3.2=6$

$$
\begin{aligned}
& \not z(G)=\left\{\left(\begin{array}{cc}
\pi & 0 \\
0 & a
\end{array}\right): a \in \mathbb{Z}_{2}^{\times}\right\}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} \\
& \therefore \quad \operatorname{PGL}_{2}\left(\mathbb{Z}_{2}\right)=G L_{2}\left(\mathbb{Z}_{2}\right)
\end{aligned}
$$

$p=3 \quad G=G l_{2}\left(z_{3}\right) \quad$ has order $\left(3^{2}-1\right)\left(3^{2}-3\right)=8 \cdot 6=48$

$$
\not Z(G)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right): a \in \mathbb{Z}_{3}^{x}\right\}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\right\} \cong \mathbb{Z}_{2}
$$

$\therefore P G L_{2}\left(\mathbb{Z}_{3}\right)$ has order 24
Exercise (Hart!) $P G L_{2}\left(\mathbb{Z}_{3}\right) \cong S_{4}$

$$
P S L_{2}\left(\mathbb{Z}_{3}\right) \cong A_{4} \cong \begin{gathered}
\text { rotations } \\
\text { of the } \\
\text { tetranedr }
\end{gathered}
$$

Exercise (Problem \# 14, 53.8)

Let it be a subgroup of $Z(G)$.
(a) Show that is a normal subgroup of G
(b) If G / N is cyclic, then G is abelian

Solution (a) Let $x \in N$ and $g \in G$. Then

$$
g \times g^{-1} \underset{x \in N \leq z(6)}{=} g g^{-1} x=e \cdot x=x \in N
$$

(b) Suppose G/N is cyclic, that is:

$$
\frac{G / N=\langle a N\rangle}{y \in G \text {. Then }}
$$

, for some $a \in G$
Let $x, y \in G$. Then

$$
\begin{aligned}
& \rightarrow\left\{\begin{array}{l}
x N=(a N)^{k}=a^{k} N \\
y N=(a N)^{e}=a^{e} N
\end{array}\right. \\
& \Rightarrow \quad\left\{\begin{array}{l}
x=a^{k} \cdot u \\
y=a^{e} \cdot V
\end{array}\right.
\end{aligned}
$$

, for some $a \in G$

Hence:

$$
\begin{align*}
x y & =\left(a^{k} n\right)\left(a^{l} v\right) \\
& =a^{k}\left(n a^{l}\right) v \\
& =a^{k}\left(a^{l} l_{u}\right) v \tag{G}\\
& =a^{k+l} u v=y x
\end{align*}
$$

QED

