
Real Analysis, MATH 3150 Solutions to the Final Exam Fall 2023

1. (11 pts) Prove that x2x = 9− x2 for some x ∈ (0, 2)

Solution: Let h(x) = x2x − 9 + x2. Since h is a continuous function,
h(0) = 0(20) − 9 + 02 = −9 < 0, and h(2) = 2(22) − 9 + 22 = 8 − 9 + 4 = 3 > 0,
it follows from the Intermediate Value Theorem that h(x) = 0 for some x ∈ (0, 2).
Then for this value of x we have x2x − 9 + x2 = 0, and hence x2x = 9− x2.

2. (11 pts) Prove |e−x − e−y| ≤ |x− y| for all x ≥ 0, y ≥ 0.

Solution: Let x ̸= y be nonnegative numbers. de−x/dx = −e−x, so it follows from
the Mean Value theorem that there is at least one number c between x and y such
that

−e−c =
e−x − e−y

x− y

c is nonnegative, so −c ≤ 0 and hence e−c ≤ 1 since et is an increasing function and
e0 = 1. Thus,

1 ≥ |e−c| = |e−x − e−y|
|x− y|

and hence |x− y| ≥ |e−x − e−y|.

3. (11 pts) Show that
∞∑
n=1

1

n3/2
sin(n2x3)

converges uniformly on R to a continuous function.

Solution: Since | sin(θ)| ≤ 1 for all θ, we have that∣∣∣∣ 1

n3/2
sin(n2x3)

∣∣∣∣ ≤ 1

n3/2
for all n ∈ N and x ∈ R∑

1/n3/2 is a convergent p-series with p = 3/2 > 1, so by the Weierstrass M -test it
follows that

∑∞
n=1

1
n3/2 sin(n

2x3) converges uniformly on R to a function f . From the
theorem in the text that the uniform limit of continuous functions is continuous, it
follows that f is continuous, and hence, the argument is complete.

4. (10 pts) Find

lim
n→∞

1

n

(
cos(1/n) + cos(2/n) + · · ·+ cos((n− 1)/n) + cos(n/n)

)
Solution: Let Pn be the partition of [0, 1] given by

Pn = {0 = t0 < 1/n < 2/n < · · · < (n− 1)/n < n/n = 1 = tn}
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Then
1

n

(
cos(1/n) + cos(2/n) + · · ·+ cos((n− 1)/n) + cos(n/n)

)
=

n∑
k=1

cos(tk) · (tk − tk−1)
(1)

Note that the sum in equation (1) is a Riemann sum for cos(x), and the mesh of
the partition Pn is 1/n. Since cos(x) is continuous it follows that cos(x) is integrable
on [0, 1]. Moreover, since limn→∞mesh(Pn) = 0, it follows from the definition of the

Riemann integral that the limit of the sums in equation (1) is
∫ 1

0
cos(x) dx. Since

d(sin(x))/dx = cos(x), it follows from the First Fundamental Theorem of Calculus

that
∫ 1

0
cos(x) dx = sin(1)− sin(0) = sin(1). Hence the limit of the sums in equation

(1) is sin(1).

5. Let f(x) = x sin(x) for x ∈ [−2, 2].

(a) (5 pts) Write the Taylor polynomial of degree 4 for f with center a = 0.

Solution:The Taylor series around 0 for the sine function is

sin(x) = x− x3/3! + x5/5! + · · ·+ (−1)n+1x2n+1/(2n+ 1)! + · · · .
Thus, the Taylor series around 0 for the function f is

x sin(x) = x2 − x4/3! + x6/5! + · · ·+ (−1)n+1x2n+2/(2n+ 1)! + · · · .
Hence, the Taylor polynomial of degree 4 around 0 for the function f is

P4(f, 0)(x) = x2 − x4

6
.

Alternatively, we compute the successive derivatives of f and evaluate them at
x = 0:

f(x) = x sin(x) f(0) = 0

f ′(x) = sin(x) + x cos(x) f ′(0) = 0

f ′′(x) = 2 cos(x)− x sin(x) f ′′(0) = 2

f (3)(x) = −x cos(x)− 3 sin(x) f (3)(0) = 0

f (4)(x) = x sin(x)− 4 cos(x) f (4)(0) = −4

and thus

P4(f, 0)(x) = f(0) + f ′(0)x+ f ′′(0)x/2! + f (3)(0)x/3! + f (4)(0)x/4!

= 0 + 0 · x+ 2
x2

2
+ 0 · x/6− 4

x4

24

= x2 − x4

6
.
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(b) (5 pts) Give an upper bound for the error made in approximating the function
f(x) by the polynomial in part (a) for x in the interval [−2, 2].

Solution: From the first solution in part (a), we see that the Taylor series is a
(converging) alternating series. Therefore, the error made in approximating the
function f by the Taylor polynomial P4(x) is at most the absolute value of the
first term omitted:

|f(x)− P4(x)| ≤
|x|6

5!
.

On the interval [−2, 2], we have that |x|6 ≤ 26, and so

|f(x)− P4(x)| ≤
26

120
=

8

15
.

Alternatively, we may proceed as in the first solution in part (a), and use Taylor’s
Theorem to approximate the remainder in the Taylor series. First, we compute
f (5)(x) = x cos(x) + 5 sin(x), and so

R5(x) =
f (5)(y)

5!
x5 = (y cos(y) + 5 sin(y))

x5

120
.

for some y between 0 and x. Therefore, the error made is at most

|R5(x)| =
∣∣∣∣(y cos(y) + 5 sin(y))

x5

120

∣∣∣∣
≤ (|y| |cos(y)|+ 5 |sin(y)|) |x|

5

120

≤ (2 · 1 + 5 · 1) 25

120

≤ 7
|x|5

120
.

On the interval [−2, 2], this error is at most 28
15
, which is still an upper bound,

but not as sharp as the one obtained by the first method.

6. Let f be the function defined by

f(t) =


−2t for t ≤ 0

sin(t) for 0 < t ≤ π/2

t− π/2 for t > π/2
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(a) (5 pts) Determine F (x) =

∫ x

0

f(t) dt.

Solution: For t ≤ 0, we have∫ x

0

f(t) dt = −
∫ 0

x

−2t dt

=

∫ 0

x

2t dt

= t2
∣∣∣0
x

= x2

where the first line follows from the definition that for a < b, we have
∫ a

b
f =

−
∫ b

a
f and the third line follows from the second line using the First Fundamental

Theorem of Calculus and the property the d(t2)/dt = 2t.

For 0 < x ≤ π/2 we have∫ x

0

f(t) dt =

∫ x

0

sin(t) dt

= − cos(t)
∣∣∣x
0

= − cos(x)− (− cos(0))

= 1− cos(x)

where the second line follows from the first line using the First Fundamental
Theorem of Calculus and the property that d(− cos(t))/dt = sin(t). The fourth
line follows from the third line since cos(0) = 1.

For x > π/2, we have

F (x) =

∫ x

0

f(t) dt

=

∫ π/2

0

f(t) dt+

∫ x

π/2

f(t) dt

= 1− cos(π/2) +

∫ x

π/2

(t− π/2) dt

= 1 +

[
t2

2
− πt

2

∣∣∣x
π/2

]
= 1 +

x2

2
− πx

2
− π2

8
+

π2

4

=
x

2
· (x− π) + 1 +

π2

8



MATH 3150 Final Exam, Fall 2023 5

where the second line follows from the first line since
∫ b

a
f +

∫ c

b
f =

∫ c

a
f for

a < b < c. The fourth line follows from the third line using the First Fundamental
Theorem of Calculus.

From the computations above, it follows that

F (x) =


x2 x ≤ 0

1− cos(x) 0 < x ≤ π/2
x
2
· (x− π) + 1 + π2

8
π/2 < x

(b) (5 pts) Sketch the graph of F

Solution:

y = 1− cos(x)

y = x2

y = x
2 · (x− π) + 1 + π2

8

(c) (2 pts) At which points, if any, is F not continuous?

Solution: Since f is integrable, it follows from the first part of the Second
Fundamental Theorem of Calculus that F (x) =

∫ x

0
f is continuous for all x.

(d) (2 pts) At which points, if any, is F not differentiable?

Solution: From the second part of the Second Fundamental Theorem of Calculus
it follows that F is differentiable at all values of x at which f is continuous. Thus,
F is differentiable at all values of x except possibly at the point x = π/2 where
f is not continous.

The limit of the slopes of secant lines from (x, F (x)) to (π/2, 1) as x approches
π/2 from values of x less than π/2 is the derivative of 1 − cos(x) at x = π/2.
That is

lim
x→π/2−

F (x)− F (π/2)

x− π/2
=

d(1− cos(x))

dx

∣∣∣∣
x=π/2

= sin(π/2) = 1
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Similarly, the limit of slopes of secant lines from (π/2, 1) to (x, F (X)) as x
approches π/2 from values of x greater than π/2 is the derivative of x

2
· (x−π)+

1 + π2

8
at x = π/2. That is

lim
x→π/2+

F (x)− F (π/2)

x− π/2
=

d(x
2
· (x− π) + 1 + π2

8
)

dx

∣∣∣∣∣
x=π/2

= x− π/2
∣∣
x=π/2

= 0

Since limx→π/2−
F (x)−F (π/2)

x−π/2
̸= limx→π/2+

F (x)−F (π/2)
x−π/2

, it follows that F is not dif-

ferentiable at x = π/2. This completes the proof that F is not differentiable only
at x = π/2.

7. Let f be the function defined on [0, 1] by

f(t) =

{
1 if t = 1− 1/n for some n ∈ N
0 otherwise

(a) (5 pts) Prove that f is integrable on [0, 1]

Solution: From the inequality

0 ≤ U(f)− L(f) ≤ U(f, P )− L(f, P ) for P any partition of [a, b]

and the Squeeze Lemma, it follows that in order to show L(f) = U)f) it
suffices to show that there is a sequence of paritions (Pn) of [0, 1] such that
limn→∞

[
U(f, Pn)− L(f, Pn)

]
= 0.

This can be seen as follows. Note that every interval in a partition of [0, 1]
contains elements t with f(t) = 0, and since f(t) ≥ 0 for all t, it follows that
L(f, P ) = 0 for all partitions P . Hence, L(f) = 0, and it suffices to show there
is a sequence of partitions (Pn) with limn→∞ U(f, Pn) = 0.

Next note that from the definition of f , it follows that U(f, P ) is the sum of the
lengths of the intervals in the partition P that contain an element of the form 1/k
for some k ∈ N. Hence, it suffices to show that given n ∈ N there is a partition
of [0, 1] such that the limit as n goes to infinity of the sum of the lengths of the
subintervals that contain an element of the form 1−1/k with k ∈ N is zero. This
can be done as follows.

We will use following formula for the distance between 1− 1/(k− 1) and 1− 1/k
is

1− 1/k − (1− 1/(k − 1)) = 1/(k − 1)− 1/k

= [k − (k − 1)]/k(k − 1)

= 1/k(k − 1)

(2)
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Note that for n ∈ N, the are n points t in the interval with t ≤ 1 − 1/n and
f(t) = 1. The points are 0, 1− 1/2, 1− 1/3, . . . , 1− (n− 1), 1− 1/n.

Define the partition Pn of [0, 1] as follows. t0 = 0, t1 = 1/3n(n− 1), for 2 ≤ k ≤
n− 1 let the elements ℓk = 1− 1/k− 1/3n(n− 1) and rk = 1− 1/k+1/3n(n− 1)
be in the partition, along with 1− 1/n and 1. From equation (2) it follows that
rk < ℓk+1 so the endpoints of the intervals in the partition are

0, 1/3n(n− 1), ℓ2, r2, ℓ3, r3, . . . , ℓn−1, rn−1, 1− 1/(n− 1), 1

The intervals in the partition that contain an element t with f(t) = 1 are
[0, 1/3n(n − 1)], [ℓk, rk] for 2 ≤ krn−1, and [1 − 1/n, 1]. The lengths of these
intervals are 1/3n(n − 1), 2/3n(n − 1), and 1/n. There are n − 2 intervals of
length 2/3n(n − 1) so the sum of the lengths of the subintervals that contain a
t with f(t) = 1 is

U(f, Pn) =
1

3n(n− 1)
+ (n− 2) ·

(
2

3n(n− 1)

)
+

1

n

=
1

3n(n− 1)
+

2(1− 2/n)

3n(1− 1/n)
+

1

n

Thus,

lim
n→∞

U(f, Pn) = lim
n→∞

[
1

3n(n− 1)
+

2(1− 2/n)

3n(1− 1/n)
+

1

n

]
= 0 + 0 + 0

and the proof is complete.

(b) (5 pts) Find the value of

∫ 1

0

f(t) dt

Solution: From the above, we conclude that∫ 1

0

f(t) dt = L(f) = U(f) = 0.

8. Let fn(x) = (x+ 1
n
)2 for x ∈ [0, 2].

(a) (5 pts) Does the sequence (fn) converge pointwise on [0, 2]? If so, find the limit
function f .

Solution: For each x ∈ [0, 2], we have (by properties of limits of converging
sequences),

lim
n→∞

fn(x) = lim
n→∞

(
x+

1

n

)2

=

(
x+ lim

n→∞

1

n

)2

= (x+ 0)2 = x2.

Therefore, the sequence (fn) converges pointwises on the interval [0, 2] to the
function f(x) = x2.
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(b) (5 pts) Does (fn) converge uniformly on [0, 2]? Prove your assertion.

Solution: We have

|fn(x)− f(x)| =

∣∣∣∣∣
(
x+

1

n

)2

− x2

∣∣∣∣∣
=

∣∣∣∣2xn +
1

n2

∣∣∣∣
≤ 4

n
+

1

n2
.

Since limn→∞( 4
n
+ 1

n2 ) = 0, independently of x, we have that

0 ≤ inf{|fn(x)− f(x)| : x ∈ [0, 2], n ∈ N} ≤ lim
n→∞

(
4

n
+

1

n2

)
= 0,

and so (fn) converge uniformly to f on [0, 2] .

9. (a) (4 pts) Fix a > 0 and consider the power series fa(x) =
∑

n≥1
1
n
(x
a
)n. Determine

its radius of convergence R.

Solution: The limit of the absolute values of consecutive terms in the series is
equal to

lim
n→∞

∣∣∣∣∣ 1
n+1

(x
a
)n+1

1
n
(x
a
)n

∣∣∣∣∣ = lim
n→∞

n

n+ 1

|x|
a

=
|x|
a
.

By the Ratio Test, we know this converges when |x|
a
< 1, that is, |x| < a. There-

fore, the radius of convergence is R = a.

(b) (4 pts) Compute f ′
a(x) on (−R,R), and identify this with a known function in

closed form.

Solution: Differentiating the power series fa(x) term by term (within its radius
of convergence), and summing up the resulting geometric series (with initial term
1 and ratio x/a), we obtain

f ′
a(x) =

∑
n≥1

1

an
xn−1

=
1

a

∑
k≥0

(x
a

)k

=
1

a

1

1− x
a

=
1

a− x
.
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(c) (3 pts) Find an explicit expression for fa(x).

Solution: Using the Fundamental Theorem of Calculus (part I), we find that

fa(x) =

∫
f ′
a(x)dx =

∫
1

a− x
dx = − log(a− x) + C

for some constant C. But

fa(0) =
∑
n≥1

1

n

(
0

a

)n

= 0

and so C = fa(0) + log(a− 0) = log(a). Hence,

fa(x) = − log
(
1− x

a

)
.

(d) (2 pts) Evaluate the series
∑∞

n=1
1

n 3n
.

Solution: The series is of the type in part (a), with a = 3 and x = 1. Using the
formula for fa(x) obtained in part (c), we get:

∞∑
n=1

1
n 3n

= f3(1) = − log

(
1− 1

3

)
= log

(
3

2

)
.


