1. (11 pts) Prove that $x 2^{x}=9-x^{2}$ for some $x \in(0,2)$

Solution: Let $h(x)=x 2^{x}-9+x^{2}$. Since h is a continuous function, $h(0)=0\left(2^{0}\right)-9+0^{2}=-9<0$, and $h(2)=2\left(2^{2}\right)-9+2^{2}=8-9+4=3>0$, it follows from the Intermediate Value Theorem that $h(x)=0$ for some $x \in(0,2)$. Then for this value of x we have $x 2^{x}-9+x^{2}=0$, and hence $x 2^{x}=9-x^{2}$.
2. (11 pts) Prove $\left|e^{-x}-e^{-y}\right| \leq|x-y|$ for all $x \geq 0, y \geq 0$.

Solution: Let $x \neq y$ be nonnegative numbers. $d e^{-x} / d x=-e^{-x}$, so it follows from the Mean Value theorem that there is at least one number c between x and y such that

$$
-e^{-c}=\frac{e^{-x}-e^{-y}}{x-y}
$$

c is nonnegative, so $-c \leq 0$ and hence $e^{-c} \leq 1$ since e^{t} is an increasing function and $e^{0}=1$. Thus,

$$
1 \geq\left|e^{-c}\right|=\frac{\left|e^{-x}-e^{-y}\right|}{|x-y|}
$$

and hence $|x-y| \geq\left|e^{-x}-e^{-y}\right|$.
3. (11 pts) Show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}} \sin \left(n^{2} x^{3}\right)
$$

converges uniformly on \mathbb{R} to a continuous function.
Solution: Since $|\sin (\theta)| \leq 1$ for all θ, we have that

$$
\left|\frac{1}{n^{3 / 2}} \sin \left(n^{2} x^{3}\right)\right| \leq \frac{1}{n^{3 / 2}} \quad \text { for all } n \in \mathbb{N} \text { and } x \in \mathbb{R}
$$

$\sum 1 / n^{3 / 2}$ is a convergent p-series with $p=3 / 2>1$, so by the Weierstrass M-test it follows that $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}} \sin \left(n^{2} x^{3}\right)$ converges uniformly on \mathbb{R} to a function f. From the theorem in the text that the uniform limit of continuous functions is continuous, it follows that f is continuous, and hence, the argument is complete.
4. (10 pts) Find

$$
\lim _{n \rightarrow \infty} \frac{1}{n}(\cos (1 / n)+\cos (2 / n)+\cdots+\cos ((n-1) / n)+\cos (n / n))
$$

Solution: Let P_{n} be the partition of [0,1] given by

$$
P_{n}=\left\{0=t_{0}<1 / n<2 / n<\cdots<(n-1) / n<n / n=1=t_{n}\right\}
$$

Then

$$
\begin{align*}
& \frac{1}{n}(\cos (1 / n)+\cos (2 / n)+\cdots+\cos ((n-1) / n)+\cos (n / n)) \\
& \quad=\sum_{k=1}^{n} \cos \left(t_{k}\right) \cdot\left(t_{k}-t_{k-1}\right) \tag{1}
\end{align*}
$$

Note that the sum in equation (1) is a Riemann sum for $\cos (x)$, and the mesh of the partition P_{n} is $1 / n$. Since $\cos (x)$ is continuous it follows that $\cos (x)$ is integrable on $[0,1]$. Moreover, since $\lim _{n \rightarrow \infty} \operatorname{mesh}\left(P_{n}\right)=0$, it follows from the definition of the Riemann integral that the limit of the sums in equation (1) is $\int_{0}^{1} \cos (x) d x$. Since $d(\sin (x)) / d x=\cos (x)$, it follows from the First Fundamental Theorem of Calculus that $\int_{0}^{1} \cos (x) d x=\sin (1)-\sin (0)=\sin (1)$. Hence the limit of the sums in equation (1) is $\sin (1)$.
5. Let $f(x)=x \sin (x)$ for $x \in[-2,2]$.
(a) (5 pts) Write the Taylor polynomial of degree 4 for f with center $a=0$.

Solution:The Taylor series around 0 for the sine function is

$$
\sin (x)=x-x^{3} / 3!+x^{5} / 5!+\cdots+(-1)^{n+1} x^{2 n+1} /(2 n+1)!+\cdots .
$$

Thus, the Taylor series around 0 for the function f is

$$
x \sin (x)=x^{2}-x^{4} / 3!+x^{6} / 5!+\cdots+(-1)^{n+1} x^{2 n+2} /(2 n+1)!+\cdots
$$

Hence, the Taylor polynomial of degree 4 around 0 for the function f is

$$
P_{4}(f, 0)(x)=x^{2}-\frac{x^{4}}{6} .
$$

Alternatively, we compute the successive derivatives of f and evaluate them at $x=0$:

$$
\begin{aligned}
f(x) & =x \sin (x) & f(0) & =0 \\
f^{\prime}(x) & =\sin (x)+x \cos (x) & f^{\prime}(0) & =0 \\
f^{\prime \prime}(x) & =2 \cos (x)-x \sin (x) & f^{\prime \prime}(0) & =2 \\
f^{(3)}(x) & =-x \cos (x)-3 \sin (x) & f^{(3)}(0) & =0 \\
f^{(4)}(x) & =x \sin (x)-4 \cos (x) & f^{(4)}(0) & =-4
\end{aligned}
$$

and thus

$$
\begin{aligned}
P_{4}(f, 0)(x) & =f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) x / 2!+f^{(3)}(0) x / 3!+f^{(4)}(0) x / 4! \\
& =0+0 \cdot x+2 \frac{x^{2}}{2}+0 \cdot x / 6-4 \frac{x^{4}}{24} \\
& =x^{2}-\frac{x^{4}}{6} .
\end{aligned}
$$

(b) (5 pts) Give an upper bound for the error made in approximating the function $f(x)$ by the polynomial in part (a) for x in the interval $[-2,2]$.
Solution: From the first solution in part (a), we see that the Taylor series is a (converging) alternating series. Therefore, the error made in approximating the function f by the Taylor polynomial $P_{4}(x)$ is at most the absolute value of the first term omitted:

$$
\left|f(x)-P_{4}(x)\right| \leq \frac{|x|^{6}}{5!}
$$

On the interval $[-2,2]$, we have that $|x|^{6} \leq 2^{6}$, and so

$$
\left|f(x)-P_{4}(x)\right| \leq \frac{2^{6}}{120}=\frac{8}{15}
$$

Alternatively, we may proceed as in the first solution in part (a), and use Taylor's Theorem to approximate the remainder in the Taylor series. First, we compute $f^{(5)}(x)=x \cos (x)+5 \sin (x)$, and so

$$
R_{5}(x)=\frac{f^{(5)}(y)}{5!} x^{5}=(y \cos (y)+5 \sin (y)) \frac{x^{5}}{120} .
$$

for some y between 0 and x. Therefore, the error made is at most

$$
\begin{aligned}
\left|R_{5}(x)\right| & =\left|(y \cos (y)+5 \sin (y)) \frac{x^{5}}{120}\right| \\
& \leq(|y||\cos (y)|+5|\sin (y)|) \frac{|x|^{5}}{120} \\
& \leq(2 \cdot 1+5 \cdot 1) \frac{2^{5}}{120} \\
& \leq 7 \frac{|x|^{5}}{120}
\end{aligned}
$$

On the interval $[-2,2]$, this error is at most $\frac{28}{15}$, which is still an upper bound, but not as sharp as the one obtained by the first method.
6. Let f be the function defined by

$$
f(t)= \begin{cases}-2 t & \text { for } t \leq 0 \\ \sin (t) & \text { for } 0<t \leq \pi / 2 \\ t-\pi / 2 & \text { for } t>\pi / 2\end{cases}
$$

(a) (5 pts) Determine $F(x)=\int_{0}^{x} f(t) d t$.

Solution: For $t \leq 0$, we have

$$
\begin{aligned}
\int_{0}^{x} f(t) d t & =-\int_{x}^{0}-2 t d t \\
& =\int_{x}^{0} 2 t d t \\
& =\left.t^{2}\right|_{x} ^{0} \\
& =x^{2}
\end{aligned}
$$

where the first line follows from the definition that for $a<b$, we have $\int_{b}^{a} f=$ $-\int_{a}^{b} f$ and the third line follows from the second line using the First Fundamental Theorem of Calculus and the property the $d\left(t^{2}\right) / d t=2 t$.
For $0<x \leq \pi / 2$ we have

$$
\begin{aligned}
\int_{0}^{x} f(t) d t & =\int_{0}^{x} \sin (t) d t \\
& =-\left.\cos (t)\right|_{0} ^{x} \\
& =-\cos (x)-(-\cos (0)) \\
& =1-\cos (x)
\end{aligned}
$$

where the second line follows from the first line using the First Fundamental Theorem of Calculus and the property that $d(-\cos (t)) / d t=\sin (t)$. The fourth line follows from the third line since $\cos (0)=1$.
For $x>\pi / 2$, we have

$$
\begin{aligned}
F(x) & =\int_{0}^{x} f(t) d t \\
& =\int_{0}^{\pi / 2} f(t) d t+\int_{\pi / 2}^{x} f(t) d t \\
& =1-\cos (\pi / 2)+\int_{\pi / 2}^{x}(t-\pi / 2) d t \\
& =1+\left[\frac{t^{2}}{2}-\left.\frac{\pi t}{2}\right|_{\pi / 2} ^{x}\right] \\
& =1+\frac{x^{2}}{2}-\frac{\pi x}{2}-\frac{\pi^{2}}{8}+\frac{\pi^{2}}{4} \\
& =\frac{x}{2} \cdot(x-\pi)+1+\frac{\pi^{2}}{8}
\end{aligned}
$$

where the second line follows from the first line since $\int_{a}^{b} f+\int_{b}^{c} f=\int_{a}^{c} f$ for $a<b<c$. The fourth line follows from the third line using the First Fundamental Theorem of Calculus.
From the computations above, it follows that

$$
F(x)= \begin{cases}x^{2} & x \leq 0 \\ 1-\cos (x) & 0<x \leq \pi / 2 \\ \frac{x}{2} \cdot(x-\pi)+1+\frac{\pi^{2}}{8} & \pi / 2<x\end{cases}
$$

(b) (5 pts) Sketch the graph of F

Solution:

(c) (2 pts) At which points, if any, is F not continuous?

Solution: Since f is integrable, it follows from the first part of the Second Fundamental Theorem of Calculus that $F(x)=\int_{0}^{x} f$ is continuous for all x.
(d) (2 pts) At which points, if any, is F not differentiable?

Solution: From the second part of the Second Fundamental Theorem of Calculus it follows that F is differentiable at all values of x at which f is continuous. Thus, F is differentiable at all values of x except possibly at the point $x=\pi / 2$ where f is not continous.
The limit of the slopes of secant lines from $(x, F(x))$ to $(\pi / 2,1)$ as x approches $\pi / 2$ from values of x less than $\pi / 2$ is the derivative of $1-\cos (x)$ at $x=\pi / 2$. That is

$$
\lim _{x \rightarrow \pi / 2^{-}} \frac{F(x)-F(\pi / 2)}{x-\pi / 2}=\left.\frac{d(1-\cos (x))}{d x}\right|_{x=\pi / 2}=\sin (\pi / 2)=1
$$

Similarly, the limit of slopes of secant lines from $(\pi / 2,1)$ to $(x, F(X))$ as x approches $\pi / 2$ from values of x greater than $\pi / 2$ is the derivative of $\frac{x}{2} \cdot(x-\pi)+$ $1+\frac{\pi^{2}}{8}$ at $x=\pi / 2$. That is

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2^{+}} \frac{F(x)-F(\pi / 2)}{x-\pi / 2} & =\left.\frac{d\left(\frac{x}{2} \cdot(x-\pi)+1+\frac{\pi^{2}}{8}\right)}{d x}\right|_{x=\pi / 2} \\
& =x-\pi /\left.2\right|_{x=\pi / 2}=0
\end{aligned}
$$

Since $\lim _{x \rightarrow \pi / 2^{-}} \frac{F(x)-F(\pi / 2)}{x-\pi / 2} \neq \lim _{x \rightarrow \pi / 2^{+}} \frac{F(x)-F(\pi / 2)}{x-\pi / 2}$, it follows that F is not differentiable at $x=\pi / 2$. This completes the proof that F is not differentiable only at $x=\pi / 2$.
7. Let f be the function defined on $[0,1]$ by

$$
f(t)= \begin{cases}1 & \text { if } t=1-1 / n \text { for some } n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

(a) (5 pts) Prove that f is integrable on $[0,1]$

Solution: From the inequality

$$
0 \leq U(f)-L(f) \leq U(f, P)-L(f, P) \text { for } P \text { any partition of }[a, b]
$$

and the Squeeze Lemma, it follows that in order to show $L(f)=U) f$) it suffices to show that there is a sequence of paritions $\left(P_{n}\right)$ of $[0,1]$ such that $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$.
This can be seen as follows. Note that every interval in a partition of $[0,1]$ contains elements t with $f(t)=0$, and since $f(t) \geq 0$ for all t, it follows that $L(f, P)=0$ for all partitions P. Hence, $L(f)=0$, and it suffices to show there is a sequence of partitions $\left(P_{n}\right)$ with $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=0$.
Next note that from the definition of f, it follows that $U(f, P)$ is the sum of the lengths of the intervals in the partition P that contain an element of the form $1 / k$ for some $k \in \mathbb{N}$. Hence, it suffices to show that given $n \in \mathbb{N}$ there is a partition of $[0,1]$ such that the limit as n goes to infinity of the sum of the lengths of the subintervals that contain an element of the form $1-1 / k$ with $k \in \mathbb{N}$ is zero. This can be done as follows.
We will use following formula for the distance between $1-1 /(k-1)$ and $1-1 / k$ is

$$
\begin{align*}
1-1 / k-(1-1 /(k-1)) & =1 /(k-1)-1 / k \\
& =[k-(k-1)] / k(k-1) \tag{2}\\
& =1 / k(k-1)
\end{align*}
$$

Note that for $n \in \mathbb{N}$, the are n points t in the interval with $t \leq 1-1 / n$ and $f(t)=1$. The points are $0,1-1 / 2,1-1 / 3, \ldots, 1-(n-1), 1-1 / n$.
Define the partition P_{n} of $[0,1]$ as follows. $t_{0}=0, t_{1}=1 / 3 n(n-1)$, for $2 \leq k \leq$ $n-1$ let the elements $\ell_{k}=1-1 / k-1 / 3 n(n-1)$ and $r_{k}=1-1 / k+1 / 3 n(n-1)$ be in the partition, along with $1-1 / n$ and 1 . From equation (2) it follows that $r_{k}<\ell_{k+1}$ so the endpoints of the intervals in the partition are

$$
0,1 / 3 n(n-1), \ell_{2}, r_{2}, \ell_{3}, r_{3}, \ldots, \ell_{n-1}, r_{n-1}, 1-1 /(n-1), 1
$$

The intervals in the partition that contain an element t with $f(t)=1$ are $[0,1 / 3 n(n-1)]$, $\left[\ell_{k}, r_{k}\right]$ for $2 \leq k r_{n-1}$, and $[1-1 / n, 1]$. The lengths of these intervals are $1 / 3 n(n-1), 2 / 3 n(n-1)$, and $1 / n$. There are $n-2$ intervals of length $2 / 3 n(n-1)$ so the sum of the lengths of the subintervals that contain a t with $f(t)=1$ is

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\frac{1}{3 n(n-1)}+(n-2) \cdot\left(\frac{2}{3 n(n-1)}\right)+\frac{1}{n} \\
& =\frac{1}{3 n(n-1)}+\frac{2(1-2 / n)}{3 n(1-1 / n)}+\frac{1}{n}
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty}\left[\frac{1}{3 n(n-1)}+\frac{2(1-2 / n)}{3 n(1-1 / n)}+\frac{1}{n}\right]=0+0+0
$$

and the proof is complete.
(b) (5 pts) Find the value of $\int_{0}^{1} f(t) d t$

Solution: From the above, we conclude that

$$
\int_{0}^{1} f(t) d t=L(f)=U(f)=0
$$

8. Let $f_{n}(x)=\left(x+\frac{1}{n}\right)^{2}$ for $x \in[0,2]$.
(a) (5 pts) Does the sequence $\left(f_{n}\right)$ converge pointwise on $[0,2]$? If so, find the limit function f.
Solution: For each $x \in[0,2]$, we have (by properties of limits of converging sequences),

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left(x+\frac{1}{n}\right)^{2}=\left(x+\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{2}=(x+0)^{2}=x^{2}
$$

Therefore, the sequence $\left(f_{n}\right)$ converges pointwises on the interval $[0,2]$ to the function $f(x)=x^{2}$.
(b) (5 pts) Does $\left(f_{n}\right)$ converge uniformly on [0, 2]? Prove your assertion.

Solution: We have

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\left|\left(x+\frac{1}{n}\right)^{2}-x^{2}\right| \\
& =\left|2 \frac{x}{n}+\frac{1}{n^{2}}\right| \\
& \leq \frac{4}{n}+\frac{1}{n^{2}}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left(\frac{4}{n}+\frac{1}{n^{2}}\right)=0$, independently of x, we have that

$$
0 \leq \inf \left\{\left|f_{n}(x)-f(x)\right|: x \in[0,2], n \in \mathbb{N}\right\} \leq \lim _{n \rightarrow \infty}\left(\frac{4}{n}+\frac{1}{n^{2}}\right)=0
$$

and so $\left(f_{n}\right)$ converge uniformly to f on $[0,2]$.
9. (a) (4 pts) Fix $a>0$ and consider the power series $f_{a}(x)=\sum_{n \geq 1} \frac{1}{n}\left(\frac{x}{a}\right)^{n}$. Determine its radius of convergence R.
Solution: The limit of the absolute values of consecutive terms in the series is equal to

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{n+1}\left(\frac{x}{a}\right)^{n+1}}{\frac{1}{n}\left(\frac{x}{a}\right)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n}{n+1} \frac{|x|}{a}=\frac{|x|}{a} .
$$

By the Ratio Test, we know this converges when $\frac{|x|}{a}<1$, that is, $|x|<a$. Therefore, the radius of convergence is $R=a$.
(b) (4 pts) Compute $f_{a}^{\prime}(x)$ on $(-R, R)$, and identify this with a known function in closed form.
Solution: Differentiating the power series $f_{a}(x)$ term by term (within its radius of convergence), and summing up the resulting geometric series (with initial term 1 and ratio x / a), we obtain

$$
\begin{aligned}
f_{a}^{\prime}(x) & =\sum_{n \geq 1} \frac{1}{a^{n}} x^{n-1} \\
& =\frac{1}{a} \sum_{k \geq 0}\left(\frac{x}{a}\right)^{k} \\
& =\frac{1}{a} \frac{1}{1-\frac{x}{a}} \\
& =\frac{1}{a-x} .
\end{aligned}
$$

(c) (3 pts) Find an explicit expression for $f_{a}(x)$.

Solution: Using the Fundamental Theorem of Calculus (part I), we find that

$$
f_{a}(x)=\int f_{a}^{\prime}(x) d x=\int \frac{1}{a-x} d x=-\log (a-x)+C
$$

for some constant C. But

$$
f_{a}(0)=\sum_{n \geq 1} \frac{1}{n}\left(\frac{0}{a}\right)^{n}=0
$$

and so $C=f_{a}(0)+\log (a-0)=\log (a)$. Hence,

$$
f_{a}(x)=-\log \left(1-\frac{x}{a}\right) .
$$

(d) (2 pts) Evaluate the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$.

Solution: The series is of the type in part (a), with $a=3$ and $x=1$. Using the formula for $f_{a}(x)$ obtained in part (c), we get:

$$
\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}=f_{3}(1)=-\log \left(1-\frac{1}{3}\right)=\log \left(\frac{3}{2}\right) .
$$

