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Milnor fibrations of arrangements Milnor fibrations

Milnor fibrations

Let A be a central arrangement of n hyperplanes in Cd`1, and fix an
ordering on A.

To each hyperplane H P A, we may associate a multiplicity mH P N.
This yields a multi-arrangement pA,mq, where m “ pmHqHPA P Nn.

For each H P A, let fH be a linear form with kerpfHq “ H. Then

fm “
ź

HPA
f mH
H

is a homogeneous polynomial of degree N “
ř

HPAmH .

Let M “ Cd`1z
Ť

HPAH be the complement of A.
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Milnor fibrations of arrangements Milnor fibrations

A

F

h

F

The polynomial map fm : Cd`1 Ñ C restricts to a smooth fibration,
f : M Ñ C˚, called the Milnor fibration of pA,mq.

The Milnor fiber is Fm :“ f ´1
m p1q. The monodromy, h : Fm Ñ Fm, is

given by hpzq “ e2πi{Nz .

Fm is a Stein manifold. It has the homotopy type of a finite
CW-complex of dimension d . It is connected iff gcdpmq “ 1.

When all mH “ 1, the polynomial f “ fm is the usual defining
polynomial of A and F “ Fm is the usual Milnor fiber.
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Milnor fibrations of arrangements The Milnor fiber as a cover

The Milnor fiber as a cover

Let U “ PpMq. Get commuting diagram with row the Milnor fibration
and column the Hopf fibration.

C˚

Fm M C˚

U

τ
z ÞÑzN

ιm

σm

fm

π

pfmq7 : π1pMq Ñ π1pC˚q sends each meridional generator γH to mH .

It follows that σm : Fm Ñ U is the regular, ZN -cover classified by the
epimorphism π1pUq ↠ ZN , γ̄H ÞÑ mH .
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Milnor fibrations with trivial algebraic monodromy Trivial algebraic monodromy

Trivial algebraic monodromy

We say that pA,mq has trivial algebraic monodromy (over k “ Z or
k “ Q) if h˚ : H˚pFm; kq Ñ H˚pFm; kq is the identity.

Let ∆qptq “ detpt ¨ id´hqq be the characteristic polynomial of
hq : HqpFm;Qq Ñ HqpFm;Qq. Then

∆qptq “ pt ´ 1qbqpUq ¨
ź

1ăk|N

Φkptqdepthqpρ
N{k
m q.

where ρm : π1pUq Ñ C˚ is the character γH ÞÑ e2π imH{N and
depthqpρq :“ dimCHqpU;Cρq.

Hence

hq is the identity ðñ bqpFmq “ bqpUq ðñ ∆qptq “ pt ´ 1qbqpFmq.
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Milnor fibrations with trivial algebraic monodromy Trivial algebraic monodromy

Characteristic varieties

Let Vq
s pX q :“

␣

ρ P H1pX ;C˚q | dimCHqpX ;Cρq ě s
(

and
Wq

s pX q :“ Vq
s pX q X H1pX ;C˚q0.

The varieties V1
s pX q depend only on π1pX q{π1pX q2.

If X is a smooth, complex quasi-projective variety, then each
irreducible component of Vq

s pX q is a torsion-translated subtorus.

The map π˚ : H1pU;C˚q ãÑ H1pM;C˚q restricts to isomorphisms
V1
s pUq

»
ÝÑ V1

s pMq, @s ě 1, Vq
1 pUq Y Vq´1

1 pUq
»

ÝÑ Vq
1 pMq, @q ě 1.

All positive-dimensional components of V1
1 pMq passing through

1 P H1pM;C˚q arise from multinets on sub-arrangements of A.

If V1
1 pMq has no essential components, then the algebraic monodromy

h˚ : H1pF ;Qq Ñ H1pF ;Qq is trivial.

If A admits a reduced multinet, then h˚ : H1pF ;Qq Ñ H1pF ;Qq is
non-trivial.
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Milnor fibrations with trivial algebraic monodromy Trivial algebraic monodromy

Proposition (Dimca–Papadima 2011)

The morphism σ˚
m : H1pU;C˚q Ñ H1pFm;C˚q restricts to maps

Vq
s pUq Ñ Vq

s pFmq, for all q, s ě 1.

The following theorem strengthens another one of their results.

Theorem
Suppose H1pFm;Qq Ñ H1pFm;Qq is the identity. Then the morphism
σ˚

m : H1pU;C˚q Ñ H1pFm;C˚q0 is a surjection with kerpσ˚
mq – ZN .

Moreover,
(1) For each s ě 1, the map σ˚

m establishes a bijection between the
irreducible components of V1

s pUq and W1
s pFmq that pass through 1.

(2) The map σ˚
m : V1

1 pUq Ñ W1
1 pFmq is a surjection.
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Milnor fibrations with trivial algebraic monodromy Abelian duality and propagation of jump loci

Abelian duality and propagation of jump loci

Let X be a connected, finite CW-complex, G “ π1pX q.

Definition (Denham–S.–Yuzvinsky 2016/17)

X is an ab-duality space of dimension n if H i pX ,ZGabq “ 0 for i ‰ n and
HnpX ,ZGabq ‰ 0 and torsion-free.

Theorem (DSY)

Let X be an abelian duality space of dimension n. Then:
b1pX q ě n ´ 1.
bi pX q ‰ 0, for 0 ď i ď n and bi pX q “ 0 for i ą n.
p´1qnχpX q ě 0.
The characteristic varieties “propagate”: V1

1 pX q Ď ¨ ¨ ¨ Ď Vn
1 pX q.

Hence, if X is formal, then the resonance varieties also propagate:
R1

1pX q Ď ¨ ¨ ¨ Ď Rn
1pX q.
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Milnor fibrations with trivial algebraic monodromy Abelian duality and propagation of jump loci

Set Gabf “ Gab{Tors.

We say X is an abf-duality space of dimension n if H i pX ,ZGabfq “ 0
for i ‰ n and HnpX ,ZGabfq ‰ 0 and torsion-free.

In this case, W1
1 pX q Ď ¨ ¨ ¨ Ď Wn

1 pX q.

Let F Ñ E Ñ B be a fibration. We say it is an ab-exact fibration if
the sequence 0 Ñ π1pF qab Ñ π1pE qab Ñ π1pBqab Ñ 0 is exact.

(DSY) Let F Ñ E Ñ B be an ab-exact fibration. If E and B are
ab-duality spaces of dimensions m and n and if dimF “ m ´ n, then
F is an ab-duality space of dimension m ´ n.

Let F Ñ E Ñ B be an abf-exact fibration. If E and B are abf-duality
spaces of dimensions m and n and if dimF “ m ´ n, then F is an
abf-duality space of dimension m ´ n.
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Milnor fibrations with trivial algebraic monodromy Abelian duality and propagation of jump loci

Theorem (DSY)

Let A be a central arrangement of rank r . Then MpAq is an abelian
duality space of dimension r .

Corollary
(1) If the monodromy action on H1pFm;Zq is trivial, then Fm is an

ab-duality space of dim r ´ 1 and V1
1 pX q Ď ¨ ¨ ¨ Ď V r´1

1 pX q.
(2) If the monodromy action on H1pFm;Qq is trivial, then Fm is an

abf-duality space of dim r ´ 1 and W1
1 pX q Ď ¨ ¨ ¨ Ď W r´1

1 pX q.

Proposition
(1) If h˚ : Hi pFm;Qq Ñ Hi pFm;Qq is the identity for i ď q, then Fm is

q-formal, and R1
1pX q Ď ¨ ¨ ¨ Ď Rq

1pX q.
(2) If h˚ : Hi pFm;Qq Ñ Hi pFm;Qq is the identity for i ă r , then Fm is

formal, and R1
1pX q Ď ¨ ¨ ¨ Ď Rr´1

1 pX q.
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Milnor fibrations with trivial algebraic monodromy Lie algebras associated to groups

Lower central series

The lower central series of a group G is defined inductively by
γ1pG q “ G , γ2pG q “ G 1, and γk`1pG q “ rG , γkpG qs.

Here, if H,K ă G , then rH,K s is the subgroup of G generated by
tra, bs :“ aba´1b´1 | a P H, b P Ku. If H,K Ÿ G , then rH,K s Ÿ G .

The subgroups γkpG q are, in fact, characteristic subgroups of G .
Moreover, rγkpG q, γℓpG qs Ď γk`ℓpG q, @k , ℓ ě 1.

In particular, it is a central series, i.e., rG , γkpG qs Ď γk`1pG q.

It is also a normal series, i.e., γkpG q Ÿ G . Each quotient,

grkpG q :“ γkpG q{γk`1pG q

lies in the center of G{γk`1pG q, and thus is an abelian group.

If G is finitely generated, then so are its LCS quotients. Set
ϕkpG q :“ rank grkpG q.
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Milnor fibrations with trivial algebraic monodromy Lie algebras associated to groups

Associated graded Lie algebras

grpG q :“
À

kě1 grkpG q is a graded Lie algebra (over Z), with addition
induced by the group multiplication and with Lie bracket
r , s : grk ˆ grℓ Ñ grk`ℓ induced by the group commutator.

G{γkpG q is the maximal pk ´ 1q-step nilpotent quotient of G .
G{γ2pG q “ Gab, while G{γ3pG q Ø Hď2pG ;Zq.

The Chen Lie algebra of G is defined as grpG{G 2q. We have a
surjection grkpG q ↠ grkpG{G 2q, which is an iso for k ď 3.

Assuming G is finitely generated, write θkpG q “ rank grkpG{G 2q for
the Chen ranks. We have ϕkpG q ě θkpG q, with equality for k ď 3.

Example: if Fn is the free group of rank n, then
grpFnq is the free Lie algebra LiepZnq.
grkpFnq is free abelian, ϕkpFnq “ 1

k

ř

d |k µpdqnk{d .

grkpFn{F 2
n q is free abelian, θkpFnq “ pk ´ 1q

`

n`k´2
k

˘

, for k ě 2.
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Milnor fibrations with trivial algebraic monodromy Lie algebras associated to groups

Holonomy Lie algebra

For G finitely generated group, define hpG q :“ LiepHq{idealpimp∇G qq,
where H “ Gabf , LiepHq1 “ H, LiepHq2 “ H ^ H, and ∇G is the dual
of YG : H1pG ;Zq ^ H1pG ;Zq Ñ H2pG ;Zq.

hpG q is a quadratic Lie algebra, determined solely by Hď2pG q.

There is a natural epi hpG q ↠ grpG q which restricts to isos in degrees
1 and 2, and factors through epi hpG q{hpG q2 ↠ grpG{G 2q.

G is 1-formal if the Malcev Lie algebra mpG q :“ PrimpzQrG sq is
isomorphic to the LCS-completion completion of hpG q b Q.

In that case, hpG q b Q »
ÝÑ grpG q b Q and

hpG q{hpG q2 b Q »
ÝÑ grpG{G 2q b Q.
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Milnor fibrations with trivial algebraic monodromy Lie algebras of arrangements and Milnor fibers

Lie algebras of arrangement groups

(Kohno 1983) The holonomy Lie algebra of G “ G pAq is determined
by Lď2pAq:

hpG q “ LiepxH : H P Aq

M

ideal
!”

xH ,
ÿ

KPA
KĄY

xK

ı

:
HPA,Y PL2pAq

HĄY

)

.

Since M is formal, G is 1-formal. Hence, grpG q b Q – hpG q b Q is
determined by Hď2pM;Qq, and thus, by Lď2pAq.

(Papadima–S. 2004) Lď2pAq also determines the Chen ranks θkpG q.

Explicit combinatorial formulas for the LCS ranks ϕkpG q are known in
some cases, but not in general.

(Porter–S. 2020) The map h3pG q Ñ gr3pG q is an isomorphism, but it
is not known whether h3pG q is torsion-free.

There can be torsion in grpG q (S. 2001), but this torsion may not be
combinatorially determined (A-B, G-B, V-S 2020).
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Milnor fibrations with trivial algebraic monodromy Lie algebras of arrangements and Milnor fibers

Trivial algebraic monodromy and Lie algebras

Theorem
Suppose h˚ : H1pFm;Zq Ñ H1pFm;Zq is the identity. Then

grě2pπ1pFmqq – grě2pπ1pMqq.

grě2pπ1pFmq{π1pFmq2q – grě2pπ1pMq{π1pMq2q.

Theorem
Suppose h˚ : H1pF ;Qq Ñ H1pF ;Qq is the identity. Then

grě2pπ1pFmq b Q – grě2pπ1pMqq b Q.

grě2pπ1pFm{π1pF 2
mq b Q – grě2pπ1pMq{π1pMq2q b Q.

Hence, ϕkpπ1pFmq “ ϕkpπ1pMqq and θkpπ1pFmq “ θkpπ1pMqq, @k ě 2.
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Examples Decomposable arrangements

Decomposable arrangements

For each flat X P LpAq, let AX :“ tH P A | H Ą X u.
The inclusions AX Ă A give rise to maps MpAq ãÑ MpAX q; get map

j : MpAq
ś

XPL2pAq MpAX q .

The induced homomorphism on π1 yields a morphism

hpj7q : hpG q
ś

XPL2pAq hpGX q .

Theorem (Papadima–S. 2006)

The map hkpj7q is a surjection for each k ě 3 and an iso for k “ 2.

Definition
A is decomposable if the map h3pj7q is an isomorphism.

Example
Let ApΓq “ tzi ´ zj “ 0 : pi , jq P EpΓqu Ă An be a graphic arrangement.
Then ApΓq is decomposable if and only if Γ contains no K4 subgraph.
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Examples Decomposable arrangements

Theorem (Papadima–S. 2006)

Let A be a decomposable arrangement, and let G “ G pAq. Then
The map h1pj7q : h

1pG q Ñ
ś

XPL2pAq h
1pGX q is an isomorphism of

graded Lie algebras.

The map hpG q ↠ grpG q is an isomorphism

For each k ě 2, the group grkpG q is free abelian of rank
ϕkpG q “

ř

XPL2pAq ϕkpFµpX qq.

Theorem (Porter–S. 2020)

Let A and B be decomposable arrangements with Lď2pAq – Lď2pBq.
Then, for each k ě 2,

G pAq{γkpG pAqq – G pBq{γkpG pBqq.

Theorem

If A is decomposable (over Q) and G{G 2 is residually nilpotent, then the
monodromy action on H1pF pAq;Qq is trivial.
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Examples Falk’s pair of arrangements

Falk’s pair of arrangements

Both A and Â have 2 triple points and 9 double points, yet
LpAq fl LpÂq. Nevertheless, MpAq » MpÂq.

Both arrangements are decomposable; their Milnor fibrations have
trivial Z-monodromy.

Nevertheless, K “ π1pF q is not isomorphic to K̂ “ π1pF̂ q. In fact:
K{K 2 fl K̂{K̂ 2, since V1

2 pK q – Z3, yet V1
2 pK̂ q “ t1u.

K{γ3pK q fl K̂{γ3pK̂ q, since H2pK{γ3pK q;Zq “ Z3, yet
H2pK̂{γ3pK̂ q;Zq “ 0.
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Examples The deleted B3 arrangement

The deleted B3 arrangement

z2

x2

y2

y ` z

y ´ z

x ´ y x ` y

x ´ z x ` z

2

1

1

1

2 2

3 3

Let M “ MpAq, where A is the deleted B3 arrangement.

V1
1 pMq Ă pC˚q8 contains local components corresponding to the 6

triple points and 1 quadruple point, 5 components correspond-
ing to braid sub-arrangements, and a component of the form ρ¨T , where

T “
␣

pt2, t´2, t´1, t´1, 1, 1, t, tq : t P C˚
(

,
ρ “ p1, 1,´1,´1,´1,´1, 1, 1q.

This translated subtorus arises from an orbifold fibration
ψ : M Ñ pC˚, p2qq.
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Examples The deleted B3 arrangement

Let m be multiplicities as shown above. The monodromy acts trivially
on H1pFm;Qq, but not on H1pFm;Zq, which has torsion subgroup
Z2 ‘ Z2 on which the monodromy acts as

`

0 1
1 1

˘

.

The pencil ψ lifts to 3-fold cover Û obtained from pull-back diagram

Fm

Û Ŝ “ pC˚, p2, 2, 2qq

U S “ pC˚, p2qq.

κ

σm
τ

ψ̂

ν

ψ

This diagram determines all the 12 ` 1 ` 7 “ 20 components of
V1

1 pFmq, as well as those of V1
2 pFmq and V1

3 pFmq. Moreover,

k 1 2 3 4 5

grkpπ1pFmqq Z7 ‘ Z2
2 Z9 ‘ Z5

2 Z28 ‘ Z15
2 Z78 ‘ Z41

2 Z252 ‘ Z117
2

grkpπ1pFmq{π1pFmq2q Z7 ‘ Z2
2 Z9 ‘ Z5

2 Z28 ‘ Z15
2 Z48 ‘ Z?

2 Z68 ‘ Z?
2
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Examples Yoshinaga’s icosidodecahedral arrangement

Yoshinaga’s icosidodecahedral arrangement

The icosidodecahedron is the convex hull of 30 vertices given by the
even permutations of p0, 0,˘1q and 1

2p˘1,˘ϕ,˘ϕ2q, where
ϕ “ p1 `

?
5q{2.

It gives rise to an arrangement of 16 hyperplanes in R3, whose
complexification is the icosidodecahedral arrangement A in C3.

H1pF ;Zq “ Z15 ‘ Z2. Thus, the algebraic monodromy of the Milnor
fibration is trivial over Q and Zp (p ą 2), but not over Z.

Hence, grpπ1pF qq – grpπ1pUqq, away from the prime 2. Moreover,

k 1 2 3 4

grkpK q Z15 ‘ Z2 Z45 ‘ Z7
2 Z250 ‘ Z43

2 Z1,405 ‘ Z?
2

grkpK{K 2q Z15 ‘ Z2 Z45 ‘ Z7
2 Z250 ‘ Z43

2 Z530 ‘ Z?
2
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