Hyperplane arrangements with trivial algebraic monodromy

Alexandru Suciu

Northeastern University

Hyperplane Arrangements 2023 Rikkyo University, Tokyo, Japan

December 13, 2023

OUTLINE

Milnor fibrations of arrangements

- Milnor fibrations
- The Milnor fiber as a cover

MILNOR FIBRATIONS WITH TRIVIAL ALGEBRAIC MONODROMY

- Trivial algebraic monodromy
- Abelian duality and propagation of jump loci
- Lie algebras associated to groups
- Lie algebras of arrangements and Milnor fibers

EXAMPLES

- Decomposable arrangements
- Falk's pair of arrangements
- \bullet The deleted B_3 arrangement
- Yoshinaga's icosidodecahedral arrangement

MILNOR FIBRATIONS

- Let A be a central arrangement of n hyperplanes in C^{d+1}, and fix an ordering on A.
- To each hyperplane $H \in A$, we may associate a multiplicity $m_H \in \mathbb{N}$. This yields a multi-arrangement (A, m), where $m = (m_H)_{H \in A} \in \mathbb{N}^n$.
- For each $H \in \mathcal{A}$, let f_H be a linear form with $\ker(f_H) = H$. Then

$$f_{\mathsf{m}} = \prod_{H \in \mathcal{A}} f_{H}^{m_{H}}$$

is a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.

• Let $M = \mathbb{C}^{d+1} \setminus \bigcup_{H \in \mathcal{A}} H$ be the complement of \mathcal{A} .

- The polynomial map $f_m : \mathbb{C}^{d+1} \to \mathbb{C}$ restricts to a smooth fibration, $f : M \to \mathbb{C}^*$, called the *Milnor fibration* of (\mathcal{A}, m) .
- The Milnor fiber is $F_m := f_m^{-1}(1)$. The monodromy, $h: F_m \to F_m$, is given by $h(z) = e^{2\pi i/N} z$.
- *F*_m is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension *d*. It is connected iff gcd(m) = 1.
- When all $m_H = 1$, the polynomial $f = f_m$ is the usual defining polynomial of A and $F = F_m$ is the usual Milnor fiber.

The Milnor fiber as a cover

• Let $U = \mathbb{P}(M)$. Get commuting diagram with row the Milnor fibration and column the Hopf fibration.

- $(f_m)_{\sharp} : \pi_1(M) \to \pi_1(\mathbb{C}^*)$ sends each meridional generator γ_H to m_H .
- It follows that $\sigma_m \colon F_m \to U$ is the regular, \mathbb{Z}_N -cover classified by the epimorphism $\pi_1(U) \twoheadrightarrow \mathbb{Z}_N$, $\bar{\gamma}_H \mapsto m_H$.

TRIVIAL ALGEBRAIC MONODROMY

- We say that (A, m) has trivial algebraic monodromy (over k = Z or k = Q) if h_{*}: H_{*}(F_m; k) → H_{*}(F_m; k) is the identity.
- Let $\Delta_q(t) = \det(t \cdot \operatorname{id} h_q)$ be the characteristic polynomial of $h_q \colon H_q(F_m; \mathbb{Q}) \to H_q(F_m; \mathbb{Q})$. Then

$$\Delta_q(t) = (t-1)^{b_q(U)} \cdot \prod_{1 < k \mid N} \Phi_k(t)^{\mathsf{depth}_q(\rho_{\mathsf{m}}^{N/k})}.$$

where $\rho_{\mathrm{m}} \colon \pi_1(U) \to \mathbb{C}^*$ is the character $\overline{\gamma}_H \mapsto e^{2\pi \operatorname{i} m_H/N}$ and $\operatorname{depth}_q(\rho) \coloneqq \operatorname{dim}_{\mathbb{C}} H_q(U; \mathbb{C}_{\rho}).$

Hence

$$h_q$$
 is the identity $\iff b_q(F_m) = b_q(U) \iff \Delta_q(t) = (t-1)^{b_q(F_m)}.$

CHARACTERISTIC VARIETIES

- Let $\mathcal{V}_s^q(X) := \{ \rho \in H^1(X; \mathbb{C}^*) \mid \dim_{\mathbb{C}} H_q(X; \mathbb{C}_{\rho}) \ge s \}$ and $\mathcal{W}_s^q(X) := \mathcal{V}_s^q(X) \cap H^1(X; \mathbb{C}^*)^0.$
- The varieties $\mathcal{V}_s^1(X)$ depend only on $\pi_1(X)/\pi_1(X)''$.
- If X is a smooth, complex quasi-projective variety, then each irreducible component of V^q_s(X) is a torsion-translated subtorus.
- The map $\pi^* \colon H^1(U; \mathbb{C}^*) \hookrightarrow H^1(M; \mathbb{C}^*)$ restricts to isomorphisms $\mathcal{V}^1_s(U) \xrightarrow{\simeq} \mathcal{V}^1_s(M), \, \forall s \ge 1, \quad \mathcal{V}^q_1(U) \cup \mathcal{V}^{q-1}_1(U) \xrightarrow{\simeq} \mathcal{V}^q_1(M), \, \forall q \ge 1.$
- All positive-dimensional components of V¹₁(M) passing through 1 ∈ H¹(M; C*) arise from multinets on sub-arrangements of A.
- If $\mathcal{V}_1^1(M)$ has no essential components, then the algebraic monodromy $h_* : H_1(F; \mathbb{Q}) \to H_1(F; \mathbb{Q})$ is trivial.
- If \mathcal{A} admits a reduced multinet, then $h_* \colon H_1(F; \mathbb{Q}) \to H_1(F; \mathbb{Q})$ is non-trivial.

Alex Suciu

PROPOSITION (DIMCA-PAPADIMA 2011)

The morphism $\sigma_{\mathsf{m}}^* \colon H^1(U; \mathbb{C}^*) \to H^1(F_{\mathsf{m}}; \mathbb{C}^*)$ restricts to maps $\mathcal{V}_s^q(U) \to \mathcal{V}_s^q(F_{\mathsf{m}})$, for all $q, s \ge 1$.

The following theorem strengthens another one of their results.

THEOREM

Suppose $H_1(F_m; \mathbb{Q}) \to H_1(F_m; \mathbb{Q})$ is the identity. Then the morphism $\sigma_m^* \colon H^1(U; \mathbb{C}^*) \to H^1(F_m; \mathbb{C}^*)^0$ is a surjection with $\ker(\sigma_m^*) \cong \mathbb{Z}_N$. Moreover,

- For each s ≥ 1, the map σ^{*}_m establishes a bijection between the irreducible components of V¹_s(U) and W¹_s(F_m) that pass through 1.
- (2) The map $\sigma_{\mathsf{m}}^* \colon \mathcal{V}_1^1(U) \to \mathcal{W}_1^1(\mathcal{F}_{\mathsf{m}})$ is a surjection.

ABELIAN DUALITY AND PROPAGATION OF JUMP LOCI

- Let X be a connected, finite CW-complex, $G = \pi_1(X)$.
- Definition (Denham-S.-Yuzvinsky 2016/17)

X is an ab-*duality space* of dimension n if $H^i(X, \mathbb{Z}G_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}G_{ab}) \neq 0$ and torsion-free.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$
- The characteristic varieties "propagate": $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$.
- Hence, if X is formal, then the resonance varieties also propagate: $\mathcal{R}_1^1(X) \subseteq \cdots \subseteq \mathcal{R}_1^n(X).$

- Set $G_{abf} = G_{ab}/Tors$.
- We say X is an abf-duality space of dimension n if $H^i(X, \mathbb{Z}G_{abf}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}G_{abf}) \neq 0$ and torsion-free.
- In this case, $\mathcal{W}_1^1(X) \subseteq \cdots \subseteq \mathcal{W}_1^n(X)$.
- Let $F \to E \to B$ be a fibration. We say it is an ab-exact fibration if the sequence $0 \to \pi_1(F)_{ab} \to \pi_1(E)_{ab} \to \pi_1(B)_{ab} \to 0$ is exact.
- (DSY) Let $F \to E \to B$ be an ab-exact fibration. If E and B are ab-duality spaces of dimensions m and n and if dim F = m n, then F is an ab-duality space of dimension m n.
- Let $F \to E \to B$ be an abf-exact fibration. If E and B are abf-duality spaces of dimensions m and n and if dim F = m n, then F is an abf-duality space of dimension m n.

Abelian duality and propagation of jump loci

THEOREM (DSY)

Let A be a central arrangement of rank r. Then M(A) is an abelian duality space of dimension r.

COROLLARY

- (1) If the monodromy action on $H_1(F_m; \mathbb{Z})$ is trivial, then F_m is an ab-duality space of dim r-1 and $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^{r-1}(X)$.
- (2) If the monodromy action on $H_1(F_m; \mathbb{Q})$ is trivial, then F_m is an abf-duality space of dim r-1 and $\mathcal{W}_1^1(X) \subseteq \cdots \subseteq \mathcal{W}_1^{r-1}(X)$.

PROPOSITION

- (1) If $h_*: H_i(F_m; \mathbb{Q}) \to H_i(F_m; \mathbb{Q})$ is the identity for $i \leq q$, then F_m is *q*-formal, and $\mathcal{R}^1_1(X) \subseteq \cdots \subseteq \mathcal{R}^q_1(X)$.
- (2) If $h_*: H_i(F_m; \mathbb{Q}) \to H_i(F_m; \mathbb{Q})$ is the identity for i < r, then F_m is formal, and $\mathcal{R}^1_1(X) \subseteq \cdots \subseteq \mathcal{R}^{r-1}_1(X)$.

LOWER CENTRAL SERIES

- The *lower central series* of a group G is defined inductively by $\gamma_1(G) = G$, $\gamma_2(G) = G'$, and $\gamma_{k+1}(G) = [G, \gamma_k(G)]$.
- Here, if H, K < G, then [H, K] is the subgroup of G generated by $\{[a, b] := aba^{-1}b^{-1} \mid a \in H, b \in K\}$. If $H, K \lhd G$, then $[H, K] \lhd G$.
- The subgroups γ_k(G) are, in fact, characteristic subgroups of G. Moreover, [γ_k(G), γ_ℓ(G)] ⊆ γ_{k+ℓ}(G), ∀k, ℓ ≥ 1.
- In particular, it is a *central* series, i.e., $[G, \gamma_k(G)] \subseteq \gamma_{k+1}(G)$.
- It is also a *normal* series, i.e., $\gamma_k(G) \lhd G$. Each quotient,

 $\operatorname{gr}_k(G):=\gamma_k(G)/\gamma_{k+1}(G)$

lies in the center of $G/\gamma_{k+1}(G)$, and thus is an abelian group.

• If G is finitely generated, then so are its LCS quotients. Set $\phi_k(G) := \operatorname{rank} \operatorname{gr}_k(G)$.

Alex Suciu

Associated graded Lie Algebras

- gr(G) := ⊕_{k≥1} gr_k(G) is a graded Lie algebra (over Z), with addition induced by the group multiplication and with Lie bracket

 gr_k × gr_ℓ → gr_{k+ℓ} induced by the group commutator.
- $G/\gamma_k(G)$ is the maximal (k-1)-step nilpotent quotient of G. $G/\gamma_2(G) = G_{ab}$, while $G/\gamma_3(G) \leftrightarrow H^{\leq 2}(G; \mathbb{Z})$.
- The *Chen Lie algebra* of *G* is defined as gr(G/G''). We have a surjection $gr_k(G) \rightarrow gr_k(G/G'')$, which is an iso for $k \leq 3$.
- Assuming G is finitely generated, write θ_k(G) = rank gr_k(G/G") for the Chen ranks. We have φ_k(G) ≥ θ_k(G), with equality for k ≤ 3.
- Example: if F_n is the free group of rank n, then
 - $gr(F_n)$ is the free Lie algebra $Lie(\mathbb{Z}^n)$.
 - $\operatorname{gr}_k(F_n)$ is free abelian, $\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{k/d}$.
 - $\operatorname{gr}_k(F_n/F_n'')$ is free abelian, $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}$, for $k \ge 2$.

HOLONOMY LIE ALGEBRA

- For G finitely generated group, define h(G) := Lie(H)/ideal(im(∇_G)), where H = G_{abf}, Lie(H)₁ = H, Lie(H)₂ = H ∧ H, and ∇_G is the dual of ∪_G : H¹(G; Z) ∧ H¹(G; Z) → H²(G; Z).
- $\mathfrak{h}(G)$ is a quadratic Lie algebra, determined solely by $H^{\leq 2}(G)$.
- There is a natural epi $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ which restricts to isos in degrees 1 and 2, and factors through epi $\mathfrak{h}(G)/\mathfrak{h}(G)'' \twoheadrightarrow \mathfrak{gr}(G/G'')$.
- G is 1-formal if the Malcev Lie algebra m(G) := Prim(ℚ[G]) is isomorphic to the LCS-completion completion of h(G) ⊗ Q.
- In that case, $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$ and $\mathfrak{h}(G)/\mathfrak{h}(G)'' \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G/G'') \otimes \mathbb{Q}$.

LIE ALGEBRAS OF ARRANGEMENT GROUPS

 (Kohno 1983) The holonomy Lie algebra of G = G(A) is determined by L_{≤2}(A):

$$\mathfrak{h}(G) = \operatorname{Lie}(x_H : H \in \mathcal{A}) / \operatorname{ideal} \left\{ \left[x_H, \sum_{\substack{K \in \mathcal{A} \\ K \supset Y}} x_K \right] : \frac{H \in \mathcal{A}, Y \in L_2(\mathcal{A})}{H \supset Y} \right\}.$$

- Since *M* is formal, *G* is 1-formal. Hence, $gr(G) \otimes \mathbb{Q} \cong \mathfrak{h}(G) \otimes \mathbb{Q}$ is determined by $H^{\leq 2}(M; \mathbb{Q})$, and thus, by $L_{\leq 2}(\mathcal{A})$.
- (Papadima–S. 2004) $L_{\leq 2}(\mathcal{A})$ also determines the Chen ranks $\theta_k(G)$.
- Explicit combinatorial formulas for the LCS ranks $\phi_k(G)$ are known in some cases, but not in general.
- (Porter–S. 2020) The map $\mathfrak{h}_3(G) \to \operatorname{gr}_3(G)$ is an isomorphism, but it is not known whether $\mathfrak{h}_3(G)$ is torsion-free.
- There can be torsion in gr(G) (S. 2001), but this torsion may not be combinatorially determined (A-B, G-B, V-S 2020).

Alex Suciu

TRIVIAL ALGEBRAIC MONODROMY AND LIE ALGEBRAS

Theorem

Suppose $h_*: H_1(F_m; \mathbb{Z}) \to H_1(F_m; \mathbb{Z})$ is the identity. Then

•
$$\operatorname{gr}_{\geq 2}(\pi_1(F_m)) \cong \operatorname{gr}_{\geq 2}(\pi_1(M)).$$

• $\operatorname{gr}_{\geq 2}(\pi_1(F_m)/\pi_1(F_m)'') \cong \operatorname{gr}_{\geq 2}(\pi_1(M)/\pi_1(M)'').$

Theorem

Suppose $h_*: H_1(F; \mathbb{Q}) \to H_1(F; \mathbb{Q})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F_{\mathsf{m}})\otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(\pi_1(M))\otimes \mathbb{Q}.$
- $\bullet \ \operatorname{gr}_{\geqslant 2}(\pi_1(F_{\mathsf{m}}/\pi_1(F_{\mathsf{m}}'')\otimes \mathbb{Q}\cong \operatorname{gr}_{\geqslant 2}(\pi_1(M)/\pi_1(M)'')\otimes \mathbb{Q}.$

Hence, $\phi_k(\pi_1(F_m) = \phi_k(\pi_1(M))$ and $\theta_k(\pi_1(F_m) = \theta_k(\pi_1(M)))$, $\forall k \ge 2$.

DECOMPOSABLE ARRANGEMENTS

- For each flat $X \in L(\mathcal{A})$, let $\mathcal{A}_X := \{H \in \mathcal{A} \mid H \supset X\}$.
- The inclusions $\mathcal{A}_X \subset \mathcal{A}$ give rise to maps $M(\mathcal{A}) \hookrightarrow M(\mathcal{A}_X)$; get map $j \colon M(\mathcal{A}) \longrightarrow \prod_{X \in L_2(\mathcal{A})} M(\mathcal{A}_X)$.
- The induced homomorphism on π_1 yields a morphism

 $\mathfrak{h}(j_{\sharp}) \colon \mathfrak{h}(G) \longrightarrow \prod_{X \in L_2(\mathcal{A})} \mathfrak{h}(G_X).$

THEOREM (PAPADIMA-S. 2006)

The map $\mathfrak{h}_k(j_{\sharp})$ is a surjection for each $k \ge 3$ and an iso for k = 2.

Definition

 \mathcal{A} is *decomposable* if the map $\mathfrak{h}_3(j_{\sharp})$ is an isomorphism.

EXAMPLE

Let $\mathcal{A}(\Gamma) = \{z_i - z_j = 0 : (i, j) \in \mathsf{E}(\Gamma)\} \subset \mathcal{A}_n$ be a graphic arrangement. Then $\mathcal{A}(\Gamma)$ is decomposable if and only if Γ contains no K_4 subgraph.

THEOREM (PAPADIMA-S. 2006)

Let \mathcal{A} be a decomposable arrangement, and let $G = G(\mathcal{A})$. Then

- The map $\mathfrak{h}'(j_{\sharp}) \colon \mathfrak{h}'(G) \to \prod_{X \in L_2(\mathcal{A})} \mathfrak{h}'(G_X)$ is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ is an isomorphism
- For each $k \ge 2$, the group $\operatorname{gr}_k(G)$ is free abelian of rank $\phi_k(G) = \sum_{X \in L_2(\mathcal{A})} \phi_k(F_{\mu(X)}).$

THEOREM (PORTER-S. 2020)

Let \mathcal{A} and \mathcal{B} be decomposable arrangements with $L_{\leq 2}(\mathcal{A}) \cong L_{\leq 2}(\mathcal{B})$. Then, for each $k \ge 2$,

 $G(\mathcal{A})/\gamma_k(G(\mathcal{A})) \cong G(\mathcal{B})/\gamma_k(G(\mathcal{B})).$

THEOREM

If \mathcal{A} is decomposable (over \mathbb{Q}) and G/G'' is residually nilpotent, then the monodromy action on $H_1(F(\mathcal{A});\mathbb{Q})$ is trivial.

Alex Suciu

FALK'S PAIR OF ARRANGEMENTS

- Both A and have 2 triple points and 9 double points, yet L(A) ≇ L(Â). Nevertheless, M(A) ≃ M(Â).
- Both arrangements are decomposable; their Milnor fibrations have trivial Z-monodromy.
- Nevertheless, K = π₁(F) is not isomorphic to K̂ = π₁(F̂). In fact:
 K/K" ≇ K̂/K̂", since V¹₂(K) ≅ Z₃, yet V¹₂(K̂) = {1}.
 - $K/\gamma_3(K) \not\cong \hat{K}/\gamma_3(\hat{K})$, since $H_2(K/\gamma_3(K); \mathbb{Z}) = \mathbb{Z}_3$, yet $H_2(\hat{K}/\gamma_3(\hat{K}); \mathbb{Z}) = 0$.

The deleted B_3 arrangement

• Let M = M(A), where A is the deleted B₃ arrangement.

- $\mathcal{V}_1^1(M) \subset (\mathbb{C}^*)^8$ contains local components corresponding to the 6 triple points and 1 quadruple point, 5 components corresponding to braid sub-arrangements, and a component of the form $\rho \cdot T$, where $T = \{(t^2, t^{-2}, t^{-1}, t^{-1}, 1, 1, t, t) : t \in \mathbb{C}^*\},\ \rho = (1, 1, -1, -1, -1, -1, 1, 1).$
- This translated subtorus arises from an orbifold fibration $\psi: M \to (\mathbb{C}^*, (2)).$

Alex Suciu

20/23

- Let m be multiplicities as shown above. The monodromy acts trivially on H₁(F_m; Q), but not on H₁(F_m; Z), which has torsion subgroup Z₂ ⊕ Z₂ on which the monodromy acts as (⁰₁ ¹₁).
- The pencil ψ lifts to 3-fold cover \hat{U} obtained from pull-back diagram

• This diagram determines all the 12 + 1 + 7 = 20 components of $\mathcal{V}_1^1(F_m)$, as well as those of $\mathcal{V}_2^1(F_m)$ and $\mathcal{V}_3^1(F_m)$. Moreover,

YOSHINAGA'S ICOSIDODECAHEDRAL ARRANGEMENT

- The icosidodecahedron is the convex hull of 30 vertices given by the even permutations of $(0, 0, \pm 1)$ and $\frac{1}{2}(\pm 1, \pm \phi, \pm \phi^2)$, where $\phi = (1 + \sqrt{5})/2$.
- It gives rise to an arrangement of 16 hyperplanes in ℝ³, whose complexification is the icosidodecahedral arrangement A in C³.
- *H*₁(*F*; ℤ) = ℤ¹⁵ ⊕ ℤ₂. Thus, the algebraic monodromy of the Milnor fibration is trivial over ℚ and ℤ_p (p > 2), but not over ℤ.
- Hence, $gr(\pi_1(F)) \cong gr(\pi_1(U))$, away from the prime 2. Moreover,

k	1	2	3	4
$\operatorname{gr}_k(K)$	$\mathbb{Z}^{15}\oplus\mathbb{Z}_2$	$\mathbb{Z}^{45}\oplus\mathbb{Z}_2^7$	$\mathbb{Z}^{250}\oplus\mathbb{Z}_2^{43}$	$\mathbb{Z}^{1,405}\oplus\mathbb{Z}_2^?$
${\operatorname{gr}}_k({\operatorname{{\it K}}}/{\operatorname{{\it K}}}'')$	$\mathbb{Z}^{15}\oplus\mathbb{Z}_2$	$\mathbb{Z}^{45}\oplus\mathbb{Z}_2^7$	$\mathbb{Z}^{250}\oplus\mathbb{Z}_2^{43}$	$\mathbb{Z}^{530} \oplus \mathbb{Z}_2^?$

References

- A.I. Suciu, *Milnor fibrations of arrangements with trivial algebraic monodromy*, preprint <u>arxiv:2402.03619</u>
- A.I. Suciu, On the topology and combinatorics of decomposable arrangements, preprint.