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TOPOLOGICAL INVARIANTS OF GROUPS LIE ALGEBRAS ASSOCIATED TO GROUPS

ASSOCIATED GRADED LIE ALGEBRAS

The lower central series of a group G is defined inductively by
71(G) = G, 72(G) = G, and v,+1(G) = [G,v«(G)].

[7k(G),7(G)] S Yk+(G), Yk, £ > 1.

In particular, it is a central series, i.e., [G,7(G)] € Yk+1(G).

It is also a normal series, i.e., 7x(G) < G. Each quotient,
grk(G) == 1 (G)/7k+1(G)

lies in the center of G/vk+1(G), and thus is an abelian group.

If G is finitely generated (for short, f.g.), then so are its LCS
quotients. Set ¢x(G) = rankgr,(G).

gr(G) = M=, 8rk(G) is a graded Lie algebra (over Z), with addition

induced by the group multiplication and with Lie bracket
[,]: gre xgr, — grye,, induced by the group commutator.
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TOPOLOGICAL INVARIANTS OF GROUPS LIE ALGEBRAS ASSOCIATED TO GROUPS

@ The Chen Lie algebra of G is defined as gr(G/G"). We have a
surjection gr,(G) — gri(G/G"), which is an iso for k < 3.

@ Assuming G is f.g., write 0x(G) = rankgr,(G/G") for the Chen ranks.
We have ¢ (G) = 6(G), with equality for k < 3.

@ Example: if F, is the free group of rank n, then
e gr(Fp,) is the free Lie algebra Lie(Z").
@ gri(Fp) is free abelian, of rank ¢4 (F,) = %Zd\kﬂ(d)”k/d-

o gr, (F,/F!) is free abelian, 0,(F,) = (k — 1)(n+:72), for k = 2.
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TOPOLOGICAL INVARIANTS OF GROUPS LIE ALGEBRAS ASSOCIATED TO GROUPS

HoroNOMY LIE ALGEBRA

e For G a f.g. group, define
h(G) := Lie(H)/ideal(im(V¢)),

where H = Gaps = G,/ Tors, Lie(H); = H, Lie(H)2 = H A H, and
Ve: H*(G;Z)Y — H A H is the dual of the cup-product map
ug: HY(G;Z) A HY(G;Z) — H?*(G; 7).

e h(G) is a quadratic Lie algebra, determined solely by H<?(G).

@ There is a natural epi hH(G) — gr(G) which restricts to isos in degrees
1 and 2, and factors through epi h(G)/H(G)" — gr(G/G").

e G is 1-formal if the Malcev Lie algebra m(G) = Prim((QT[\G]) is
isomorphic to the LCS-completion completion of h(G) ® Q.

e In that case, hH(G) ® Q — gr(G) ® Q and
h(G)/h(G)"®Q — gr(G/G") ® Q.
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TOPOLOGICAL INVARIANTS OF GROUPS THE ALEXANDER INVARIANT

THE ALEXANDER INVARIANT

e Let G” = (G')’. We then have an extension
1— G/)G" — G/G" — G/G' — 1.

@ Both G/G’' = G, are G'/G" = (G'),p, are abelian groups, and G/G”
is the maximal metabelian quotient of G.

o The Alexander invariant is
B(G) = G'/G".
viewed as a ZG,,-module via gG’" - xG” = gxg 1 G" for g € G and
xe G
e If X is a connected CW-complex with 71(X) = G, then
B(G) = Hi(X*®,Z) = Hi(X, Z[Gap)),

where g: X2 — X is the universal abelian cover and G, acts on
B(G) by automorphisms induced by deck transformations.
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TOPOLOGICAL INVARIANTS OF GROUPS THE ALEXANDER INVARIANT

@ A homomorphism «: G — H induces compatible homomorphisms,
aab: Gap — Hap and B(a): B(G) — B(H).

e Thatis, if Aap: Z[Gap] — Z[Hab] is the linear extension of ayp, to a
ring map, then B(«) is a morphism of modules covering a,y, i.e.,
B(a)(rm) = aap(r) - B(a)(m) for all r € Z[Gap] and m € B(G).

e B(«) factors as

B(G) — B(H)a — B(H),

where B(H),, is the Z[G,p]-module obtained from B(H) by restriction
of scalars via a.

THEOREM (MASSEY 1980)

Let | = ker(e: Z[Gap| — Z) be the augmentation ideal. Then
I"B(G) = vn4+2(G/G"), and thus gr,(B) = gr,,»(G/G"), for all n = 0.

Hence:

Hilb(gr(B(G) ® Q) t) = > O 12(G)t".

n=0
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TOPOLOGICAL INVARIANTS OF GROUPS INFINITESIMAL ALEXANDER INVARIANT

INFINITESIMAL ALEXANDER INVARIANT

@ Let G be a f.g. group. The symmetric algebra Sym(G,ps) is
isomorphic to gr(Z[Gaps]).

o If we identify G,ps with Z", where r = b1 (G), then Sym(G,ps) gets
identified with the polynomial ring Z[x1, ..., x/].

@ Now let h(G) be the holonomy Lie algebra of G. The infinitesimal
Alexander invariant of G is the quotient group

B(G) = h(G)'/h(G)",
viewed as a graded module over Sym(G,pf). The module structure
comes from the exact sequence

0 — b(G)'/b(G)" — H(G)/b(G)" — bH(G)/H(G) — 0

via the adjoint action of h(G)/h(G)" = h1(G) = Gapr on H(G)' /H(G)”
given by g - x = [g,x] for g € h1(G) and x € h(G)’, and with the
grading inherited from the one on hH(G).
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TOPOLOGICAL INVARIANTS OF GROUPS INFINITESIMAL ALEXANDER INVARIANT

@ When G admits a finite, commutator-relators presentation, 5(G) is
isomorphic to the “linearization” of B(G).

@ The holonomy Chen ranks of a f.g. group G are defined as
0,(G) = dimg (h(G) ® Q/h"(G) ®Q),. Then 0,(G) < 0,(G) and

0,(G) = dim,; B, »(G)®Q, forall n> 2.

THEOREM

Let G be a 1-formal group. There is then a natural, filtration-preserving

—_—

isomorphism of completed modules, B(G) ® Q =~ B(G) ® Q.

COROLLARY

If G is 1-formal, then gr(B(G) ® Q) = B(G) ® Q, as graded modules over
the ring gr(Q[Gab]) = Sym(H1(G; Q)).

v

COROLLARY
If G is 1-formal, then 0,(G) = 0,(G) = dimg B, 2(G) ® Q for all n = 2.

v
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TOPOLOGICAL INVARIANTS OF GROUPS CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

o Let G be a f.g. group. The character group, Tg = Hom(G,C*), is an
abelian, complex algebraic group, with identity 1 the trivial
representation.

@ The coordinate ring of T is the group algebra C[G,p]; thus, we may
identify T with maxSpec(C[G,p]).

@ Since each character p: G — C* factors through G,},, the map
ab: G — G, induces an isomorphism, ab®: T, = T¢.

@ Let X be a connected CW-complex with finite 1-skeleton and with
m1(X) = G. Identify p € T with a rank one local system C, on X.
For each k = 1, the depth k characteristic variety of G is defined as

Vi(G) == {pe T¢ | dimg Hy(X,C,) > k}.

@ The sets Vi (G) do not depend on the choice of a space X as above.

ALEX Sucru TOPOLOGY OF DECOMPOSABLE ARRANGEMENTS Osaka DEec 20, 2023 10 /31



TOPOLOGICAL INVARIANTS OF GROUPS CHARACTERISTIC VARIETIES

THEOREM
Vk(G) = supp (/\kB(G) ®C), at least away from 1 € Tg.

EXAMPLE

Let F, be a free group of rank n > 2. Then

Vi(Fn) =+ = Va1(Fa) = (C*)" and Vi (Fn) = {1} )
EXAMPLE

Let Xz be a Riemann surface of genus g > 2. Then

V1<7T1(zg)) = = Vag2(m1(Xg)) = (C*)% and Vag-1(m(Xg)) = {1}. )
EXAMPLE

Let K be a knot in S3, and let G = m1(S3\K). Since G, = Z, we may
identify Tg = C*. The variety V1(G) consists of 1, together with the roots
of the Alexander polynomial of the knot, Ay € Z[t*1].

o
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TOPOLOGICAL INVARIANTS OF GROUPS RESONANCE VARIETIES

RESONANCE VARIETIES

e Let H* = H*(G; C) be the cohomology algebra of a f.g. group G.

@ For each element a € H!, we have a2 = —a2, and so a2 = 0. Thus,

left-multiplication by a defines a cochain complex,
89 st
(H,6,): H® —— H' —— H2,

with differentials 6’ (u) = a- u for ue H'.

@ For each k > 1, the depth k resonance variety of G is defined as
Ri(G) = {ae H' | dimc H*(H,5,) = k}.

@ These sets are homogeneous algebraic subvarieties of the affine space

H! = H(G;C).

o Ry(G) = supp (A*B(G)®C) for all k > 1, at least away from
0e HY(G;C).

o If G is a 1-formal group, then TC;(Vk(G)) = Ri(G), for all k = 1.
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

HYPERPLANE ARRANGEMENTS

e An arrangement of hyperplanes is a finite collection A of codimension
1 linear (or affine) subspaces in C7.

@ For each H € A, let fy be a linear form with ker(fyy) = H; set
f =11nea -

@ Intersection lattice L(A): poset of all intersections of A, ordered by
reverse inclusion, and ranked by codimension.
Hy Hs L>(A) X1 Xa X3 X4

Xa H,

X3

H
X X\ ¢ L1(A) Hy Ho Hs H,

o Complement M(A) = C9\|J,.4 H: a smooth algebraic variety and a
Stein manifold homotopic to a finite, connected CW-complex of dim d.
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EXAMPLE (THE BOOLEAN ARRANGEMENT)

HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

B,: all coordinate hyperplanes z; = 0 in C".
L(B,): Boolean lattice of subsets of {0,1}".
M(B,): complex algebraic torus (C*)" ~ K(Z",1).

EXAMPLE (THE BRAID ARRANGEMENT)

Ap: all diagonal hyperplanes z; — z; = 0 in C".
L(Ap): lattice of partitions of [n] := {1,..., n}, ordered by refinement.

M(A,): (ordered) configuration space of n distinct points in C; it is a
classifying space K (P, 1) for the pure braid group on n strands, P,.

v

The space M = M(.A) admits a minimal cell structure.

The groups Hq(M; Z) are finitely generated and torsion-free, with
ranks given by S1_o bg(M)t7=Y ;4 u(X)(—t)2"X), where ;12 L(A) — Z
is defined by 11(C) = 1 and u(X) = — Yyox pu(Y).
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HYPERPLANE ARRANGEMENTS COHOMOLOGY RINGS OF ARRANGEMENTS

COHOMOLOGY RINGS OF ARRANGEMENTS

o Let E be the Z-exterior algebra on degree 1 cohomology classes
eH = %[dlog(fH)] dual to the meridians x4y around H € A.

o Let 0: E* — E*~! be the differential given by d(ey) = 1, and set
ex = | [yox en for each X € L(A).

@ Arnold, Brieskorn, Orlik—-Solomon showed: H*(M;Z) =~ E/I, where
I = (Oex : rank(X) < | X]).

o M is Q-formal (albeit not Z,-formal, in general).

EXAMPLE
e E= Ales,...,e5)
o | ={(er— es)(e2—es),(e1 — es)(e3 — e5),
4 (e2—eg)(e3s —e5),(es — €5)(es — €6))
2 3 56
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUPS OF ARRANGEMENTS

FUNDAMENTAL GROUPS OF ARRANGEMENTS

o Let A = {H n C?}yc4 be a generic planar section of A. Then the
arrangement group, G(A) = m1(M(A)), is isomorphic to w1 (M(A")).

@ So let A be an arrangement of n affine lines in C?. Taking a generic
projection C?> — C vyields the braid monodromy o = (o, . .., ),
where s = #{multiple points} and the braids o, € P, < Aut(F,) can
be read off an associated braided wiring diagram,

@ The group G(.A) has a presentation with meridional generators
X1,...,Xn and commutator relators x,-aj(x,-)*l.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS OF ARRANGEMENT GROUPS

LIE ALGEBRAS OF ARRANGEMENT GROUPS

@ (Kohno 1983) The holonomy Lie algebra of G = G(.A) is determined
by [_gz(A)I

h(G) = Lie(xy : H e A)/ideal {[XH7ZK€A XK:| , HeAYelz(4) }

KoY H>Y

@ Since M is formal, G is 1-formal. Hence, gr(G) ® Q =~ h(G) ®Q is
determined by H<?(M; Q), and thus, by L<o(A).

o U(h(G)®Q) = Ext4(Q,Q) = Z!, the quadratic dual of the quadratic
closure of the OS-algebra A = H*(M, Q).

o (Papadima-S. 2004) L<>(A) also determines the Chen ranks 6,(G).

e Explicit combinatorial formulas for the LCS ranks ¢« (G) are known in
some cases, but not in general.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS OF ARRANGEMENT GROUPS

o (Falk—Randell 1985) If A is supersolvable with exponents di, ..., dp,
then ¢4 (G) = Zle ok (Fg,). (Also follows from Koszulity of
H*(M,Q) and Koszul duality.)

o (Porter-S. 2020) The map h3(G) — gr3(G) is an isomorphism, but it
is not known whether h3(G) is torsion-free.

@ (S. 2002) The groups gr,(G) may have non-zero torsion for k > 0.
E.g., if G = G(MacLane), then grs(G) = Z8 ® Z4 @ Z3.

@ (S. 2002): Is the torsion in gr(G) combinatorially determined?
o (Artal Bartolo, Guerville-Ball¢, and Viu-Sos 2020): Answer: No!

@ There are two arrangements of 13 lines, A*, each one with 11 triple
points and 2 quintuple points, such that gr, (G") =~ gr, (G™) for
k <3, yet gry(GY) = Z211 @© 7 and gr,(G~) = 72
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HYPERPLANE ARRANGEMENTS NILPOTENT QUOTIENTS OF ARRANGEMENT GROUPS

NILPOTENT QUOTIENTS OF ARRANGEMENT GROUPS

@ The quotient G/73(G) is determined by L<2(.A). Indeed, in the
central extension,

0 — gr(G) — G/v3(G) — Gap — 0,

we have gr,(G) = (/1?)¥ and the k-invariant Ho(G.p) — gr,(G) is
dual of the inclusion /2 «— E? = /\2 Gab.

o (G. Rybnikov 1994): G/~4(G) is not always determined by L<»(A).

@ There are two arrangements of 13 lines, AT, each one with 15 triple
points, such that L(A") =~ L(A™), and therefore
G*/15(G*) = G /13(G) and grs(G*) = grs(G ), but
G"/7a(GT) £ G /7a(G™).

@ The difference can be explained in terms of (generalized) Massey triple
products over Zsz.
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HYPERPLANE ARRANGEMENTS COHOMOLOGY JUMP LOCI OF ARRANGEMENTS

COHOMOLOGY JUMP LOCI OF ARRANGEMENTS

@ Let A be an arrangement of n hyperplanes, and M = M(.A). Then
RY(M) is a (finite) union of linear subspaces in H*(M,C) =~ C".
@ Each subspace L has dimension at least 2, and each pair of subspaces

meets transversely at 0.

@ Ri(M) is the union of those linear subspaces L that have dimension
at least k + 1.

@ Each component of R1(M) corresponds to a multinet on a
sub-arrangement of A.

@ The characteristic variety V(M) is a finite union of torsion-translates
of algebraic subtori of Hom(m (M), C*) = (C*)".

o All components of V}(M) passing through 1 € (C*)" are of the form
T = exp(L), for some component L = R}(M).

@ In general, though, there are translated subtori in Vll(l\/l), which are
not a priori determined by L(.A).

ALEX Sucru TOPOLOGY OF DECOMPOSABLE ARRANGEMENTS Osaka DEc 20, 2023 20 /31



DECOMPOSABLE ARRANGEMENTS LOCALIZED SUB-ARRANGEMENTS

LOCALIZED SUB-ARRANGEMENTS

o For each flat X € L(A), let Ax :={He A| H > X} be the
localization of A at X.

@ Choosing a point xp close to 0 € C?, we can make xg a common
basepoint for both M(.A) and all the local complements M(Ax).

o Let jx: M(A) — M(Ax) be the inclusion corresponding to Ax < A.

@ There exist basepoint-preserving maps rx: M(Ax) — M(A) such
that jx o rx ~ id relative to xp.

@ Hence, the induced homomorphism (jx)s: G(A) — G(Ax) is
surjective and (rx)s: G(Ax) — G(A) is injective.

e When X is a 2-flat, Ax is a pencil of | X| = u(X) + 1 hyperplanes.
Hence, M(Ax) = (C\{u(X) points}) x C* x C9~2, and so M(Ax) is
a classifying space for the group G(Ax) = F,x) x Z.
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DECOMPOSABLE ARRANGEMENTS DECOMPOSING THE HOLONOMY LIE ALGEBRA

DECOMPOSING THE HOLONOMY LIE ALGEBRA
@ The maps jx: M(A) — M(Ax) give rise to a map
J: M(A) — Tlxer,(ay M(Ax) -
@ The homomorphism induced by j on fundamental groups,
Ji G(A) — Txery(a) G(Ax) =t G(A)
yields a morphism between the respective holonomy Lie algebras,
00t): 0(G) — Tlxery(a) H(Gx) = b(G)c.

THEOREM (PAPADIMA-S. 2006)

The map b (js) is a surjection for each k > 3 and an iso for k = 2.

DEFINITION

We say A is decomposable if the map h3(ji) is an isomorphism. Likewise,
A is decomposable over Q if the map h3(j;) ® Q is an isomorphism.

v
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DECOMPOSABLE ARRANGEMENTS DECOMPOSING THE HOLONOMY LIE ALGEBRA

e That is to say, A is decomposable if h3(.A) is free abelian of rank as
small as possible, namely,

loc M(X)
rank h3(G)°° = Z < 5 )
Xela(Ax)
@ Question: are decomposability and Q-decomposability equivalent?
o If Ais decomposable, and B < A, then B is decomposable.
o Let A(l) ={zi—2z =0:(i,j) € E(I)} be a graphic arrangement.
Then A(T) is decomposable if and only if I' contains no Ky subgraph.
THEOREM (PAPADIMA-S. 2006)

Let A be a decomposable arrangement, with group G = G(.A). Then:
o h(j): H'(G) — ' (G)" is an isomorphism of graded Lie algebras.
@ The map h(G) — gr(G) is an isomorphism.
@ For each k > 2, the group gr(G) is free abelian of rank
$(G) = D d(Fupx))-

Xelo (.A)
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DECOMPOSABLE ARRANGEMENTS

THEOREM (PAPADIMA-S. 2006)

Let A be a decomposable arrangement, with group G = G(A). Then:
e gr(G/G") = H(G)/H"(G), as graded Lie algebras over 7.
e gr(G/G") is torsion-free, as a graded abelian group.
@ The Chen ranks of G, for k = 2, are given by

2 Ok (Fuix))

X€L2 )

THEOREM (PORTER-S. 2020)

Let A and B be decomposable arrangements with L<>(A) = L<>(B).
Then, for each k > 2

G(A)/(G(A)) = G(B)/7(G(B)).
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DECOMPOSABLE ARRANGEMENTS ALEXANDER INVARIANTS OF ARRANGEMENTS

ALEXANDER INVARIANTS OF ARRANGEMENTS

@ The Alexander invariant of an arrangement A is defined as
B(A) = B(G(A)) = G'/G",
viewed as a module over the group ring R = Z|G,p| = Z[H1(M; Z)].

@ For each flat X € Ly(.A), we also have a “local” Alexander invariant,
B(Ax), viewed as a module over the group ring Rx = Z[H1(Mx; Z)].

@ The homomorphism jﬂX: G(A) — G(Ax) induces a morphism
B(jﬁx): B(A) — B(Ax), which covers the ring map jX: R — Rx
induced by jX: Hi(M;Z) — Hy(Mx; 7).

@ We then obtain an R-morphism, M: B(A) — B(.A)"°¢, where

BAP = @ BAx)x
XELz(.A)

is the R-module obtained from @, B(Ax) by restriction of scalars.
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DECOMPOSABLE ARRANGEMENTS DECOMPOSABLE ALEXANDER INVARIANTS

DECOMPOSABLE ALEXANDER INVARIANTS

PROPOSITION
The R-morphism M: B(A) — B(A)"°C is surjective.

DEFINITION

We say that the Alexander invariant of A decomposes if the map
M: B(A) — B(A)" is an isomorphism of R-modules.

(A similar definition works over Q.)

o Let | = ker(c: Z[Gap] — Z) be the augmentation ideal, and let B be
the completion of B in the /-adic topology.

o The R-module B = B(A) is separated if (), /“B = {0}, or,
equivalently, the map B — B is injective.

o If G(A) is residually nilpotent, then B(.A) is separated.
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DECOMPOSABLE ARRANGEMENTS DECOMPOSABLE ALEXANDER INVARIANTS
@ We define the infinitesimal Alexander invariant of A as
B(A) = B(G(A)) = b'(A)/h"(A),

viewed as a module over the symmetric algebra S = Sym|[G,p].

@ Since Gop = H1(M(A);Z) and R = Z[H1(M(A); Z)], the ring S is
isomorphic (as a graded ring) to gr(R).

@ To each X € L5(.A) there corresponds B(.Ax), a module over
Sx = Sym[Hi(M(Ax);Z)] = gr(Rx).

@ As before, we obtain a surjective morphism of graded S-modules,

n: B(A) — %(A)'“.
DEFINITION

We say that the infinitesimal Alexander invariant of A decomposes if the
map M: B(A) — B(A)°° is an isomorphism of S-modules.
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DECOMPOSABLE ARRANGEMENTS DECOMPOSABLE ALEXANDER INVARIANTS

THEOREM
e If A is decomposable, then B(A) is decomposable
o If A is Q-decomposable, then B(A) and B(.A) are Q-decomposable.

o If A is Q-decomposable and B(A) ® Q is separated, then B(A) is
Q-decomposable.

COROLLARY

Let A= {Hy,..., Hy} and set [(A) = {X € Ly(A) : u(X) > 1}.
o If A is Q-decomposable, then RY(M(A)) = UXelz(A) Lx, where

sz{xe(C”: Z X,-=Oandx,-=0ifH,-¢.AX}.

H,'E.AX
o IfA is Q decomposable and B(A) ® Q is separated, then
VHM = Uy eia(a) X, where

TX:{te c*" Ht,—landt,—llfHeéAx}
Hie Ax
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DECOMPOSABLE ARRANGEMENTS MILNOR FIBRATIONS

MILNOR FIBRATIONS

o Let A be a central arrangement of n hyperplanes in C?, with defining
polynomial f =[] 4 fu-

@ The polynomial map f: C¢ — C restricts to a smooth fibration,
f: M — C¥*, called the Milnor fibration of A.

e The Milnor fiber is F := f~1(1). The monodromy of the fibration,
h: F — F, is given by h(z) = e2™/"z.

THEOREM

If A is decomposable over Q and B(A) ® Q is separated, then the
algebraic monodromy, h,.: Hi(F; Q) — Hi(F;Q) is the identity, and
therefore, by(F) = n— 1.
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DECOMPOSABLE ARRANGEMENTS FALK’S PAIR OF ARRANGEMENTS

FALK’S PAIR OF ARRANGEMENTS

@ Both A and A have 2 triple points and 9 double points, yet

~

L(A) # L(A). Nevertheless, M(A) ~ M(A).

@ Both arrangements are decomposable, and their Milnor fibrations have
trivial Z-monodromy.

o Nevertheless, K = 71 (F) is not isomorphic to K = 71 (F). In fact:
o K/K" % K/K", since V3(K) = Zs, yet VI(K) = {1}.

o K/y3(K) £ K/v3(K), since Ha(K/3(K); Z) = Zs, yet
H>(K/v3(K); Z) = 0.
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