Artin kernels and Milnor fibrations of arrangements

Alexandru Suciu
Northeastern University

Workshop on Artin groups and arrangements: topology, geometry, and combinatorics

SLMath, Berkeley
March 15, 2024

RAAGs and arrangements: A comparison

Simplicial complex $L \subset 2^{[n]}$	Toric complex $T_{L} \subset T^{n}$ $\# k$-cells $=b_{k}, \operatorname{dim} T_{L}=\operatorname{dim} L+1$
Graph $\Gamma=(V, E)=L^{(1)}$	$\begin{aligned} & \operatorname{RAAG} G_{\Gamma}=\pi_{1}\left(T_{L}\right)= \\ & \langle v \in V:[v, w]=1 \text { if }\{v, w\} \in E\rangle \end{aligned}$
Flag complex $\Delta_{\text {「 }}$	Classifying space $K\left(G_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$ Hence, G_{Γ} is torsion-free
Cohomology ring $H^{*}\left(T_{L} ; \mathbb{k}\right)$	Exterior Stanley-Reisner ring $\mathbb{k}\langle L\rangle=\bigwedge\left(e_{V}\right) /\left(e_{\sigma}: \sigma \notin L\right)$
L flag complex	$\mathbb{k}\langle L\rangle$ Koszul algebra
T_{L} formal over \mathbb{Q} and \mathbb{Z}	$\begin{aligned} & A_{\mathrm{PL}}\left(T_{L}\right) \simeq_{\mathrm{CDGA}} H^{*}(X ; \mathbb{Q}) \\ & C^{*}\left(T_{L} ; \mathbb{Z}\right) \simeq_{\mathrm{DGA}} H^{*}(X ; \mathbb{Z}) \end{aligned}$ Hence, G_{Γ} is 1-formal

Arrangement \mathcal{A} in \mathbb{C}^{d}
Defining polynomial
$f=\prod_{H \in \mathcal{A}} f_{H}, \operatorname{ker}\left(f_{H}\right)=H$
$G(\mathcal{A})=\pi_{1}(M(\mathcal{A}))$, gens $\left\{x_{H}\right\}_{H \in \mathcal{A}}$, commutator rels

Cohomology $H^{*}(M(\mathcal{A}) ; \mathbb{Z})$ is torsion-free
$b_{k}(M)=\sum_{X \in L_{k}(\mathcal{A})}(-1)^{k} \mu(X)$
\mathcal{A} supersolvable
$M(\mathcal{A})$ formal over \mathbb{Q}

Lattice $L(\mathcal{A})=\left\{\bigcap_{H \in \mathcal{B}} H: \mathcal{B} \subset \mathcal{A}\right\}$
Complement $M(\mathcal{A})=\mathbb{C}^{d} \backslash \bigcup_{H \in \mathcal{A}} H$ Minimal cell structure, $\operatorname{dim} \leqslant d$

No finite $K(G(\mathcal{A}), 1)$ in general Is $G(\mathcal{A})$ torsion-free?

Orlik-Solomon algebra $A=\bigwedge\left(e_{H}\right) /\left(\partial e_{X}: \operatorname{codim}(X)<|X|\right)$
$\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ defined by $\mu\left(\mathbb{C}^{d}\right)=1$ and $\mu(X)=-\sum_{Y \supsetneq X} \mu(Y)$

A Koszul algebra
$H^{*}(X ; \mathbb{R}) \rightarrow \Omega_{\mathrm{dR}}(M(\mathcal{A}))$ q-iso
$H^{k}(X ; \mathbb{C})$ has pure MHS, type (k, k)
Hence, $G(\mathcal{A})$ is 1-formal
Massey products in $H^{2}\left(G(\mathcal{A}) ; \mathbb{Z}_{p}\right)$

Artin kernels and Milnor fibers: A comparison

Weights m_{v} on vertices of $\Gamma=L^{(1)}$	Homomorphism $\chi: G_{\Gamma} \rightarrow \mathbb{Z}, \chi(v)=m_{v}$ Surjective if $\operatorname{gcd}\left(m_{v}\right)=1$
Cover $T_{L}^{\chi} \rightarrow T_{L}$	Artin kernel $N_{\chi}=\pi_{1}\left(T_{L}^{\chi}\right)=\operatorname{ker}(\chi)$
$m_{V}=1$ for all $v \in V$	Bestvina-Brady group N_{Γ}
Γ connected	N_{Γ} finitely generated
Δ_{Γ} simply connected	N_{Γ} finitely presented
If $H_{i}\left(T_{L}^{\chi} ; \mathbb{k}\right) \mathbb{k} \mathbb{Z}$-trivial, for $i \leqslant r: H^{\leqslant r}\left(T_{L}^{\chi} ; \mathbb{k}\right)=H^{\leqslant r}\left(T_{L} ; \mathbb{k}\right) /\left(\chi_{\mathbb{k}}\right)$	

Weights \mathfrak{m}_{H} on $H \in \mathcal{A}$	Polynomial $f_{\mathrm{m}}=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}}$
Milnor fibration	$f_{\mathrm{m}}: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$
Milnor fiber	$F_{\mathrm{m}}=f_{\mathrm{m}}^{-1}(1) ; F(\mathcal{A})=f^{-1}(1)$
Monodromy $\left(N=\sum_{H \in \mathcal{A}} m_{H}\right)$	$h: F_{\mathrm{m}} \rightarrow F_{\mathrm{m}}, h(z)=e^{2 \pi i / N_{z}}$
F_{m} finite complex, $\operatorname{dim} \leqslant d-1$	F_{m} connected if $\operatorname{gcd}\left(m_{H}\right)=1$
$\chi: G(\mathcal{A}) \rightarrow \mathbb{Z}, \chi\left(x_{H}\right)=m_{H}$	$F_{\mathrm{m}} \simeq M^{\chi}, \pi_{1}\left(F_{\mathrm{m}}\right)=\operatorname{ker}(\chi)$ $F_{\mathrm{m}} \rightarrow \mathbb{P}(M)$ a regular \mathbb{Z}_{N}-cover
$H_{*}\left(F_{\mathrm{m}} ; \mathbb{Z}\right)$ may have torsion	Even $H_{1}(F(\mathcal{A}) ; \mathbb{Z})$ may have torsion
$F(\mathcal{A})$ not always 1-formal	$H^{1}(F(\mathcal{A}) ; \mathbb{C})$ may be non-pure

Theorem

Let \mathcal{A} be an arrangement of lines in \mathbb{C}^{2}, with group $G=G(\mathcal{A})$. The following are equivalent:
(1) G is a right-angled Artin group.
(2) G is a finite direct product of finitely generated free groups.
(3) The multiplicity graph of \mathcal{A} is a forest.

- There exist graphs 「 such that the Bestvina-Brady group N_{Γ} is finitely presented, yet not isomorphic to either an Artin group $G_{\Gamma^{\prime}}$, or an arrangement group $G(\mathcal{A})$.
- There exist arrangements \mathcal{A} such that $G(\mathcal{A}) \cong N_{\Gamma}$ for some graph Γ, but $G(\mathcal{A}) \not \equiv G^{\prime}$, for any graph Γ^{\prime}.

Associated graded and Chen Lie algebras

Lower central series	$\begin{aligned} & \gamma_{1}(G)=G, \gamma_{2}(G)=G^{\prime} \\ & \gamma_{k+1}(G)=\left[G, \gamma_{k}(G)\right] \end{aligned}$
It is a normal, central series	$\left[\gamma_{k}(G), \gamma_{\ell}(G)\right] \subseteq \gamma_{k+\ell}(G)$
Associated graded Lie algebra	$\operatorname{gr}(G)=\bigoplus_{k \geqslant 1} \gamma_{k}(G) / \gamma_{k+1}(G)$
Chen Lie algebra	$\operatorname{gr}\left(G / G^{\prime \prime}\right)$
If G finitely generated, then $\operatorname{gr}_{k}(G)$ f.g. (abelian) groups	LCS ranks: $\phi_{k}(G)={\operatorname{rank~} \operatorname{gr}_{k}(G)}^{(G)}$ Chen ranks: $\theta_{k}(G)=\operatorname{rankgr}_{k}\left(G / G^{\prime \prime}\right)$
$\begin{aligned} & \operatorname{gr}_{k}(G) \rightarrow \operatorname{gr}_{k}\left(G / G^{\prime \prime}\right) \\ & \text { iso for } k \leqslant 3 \end{aligned}$	$\begin{aligned} & \phi_{k}(G) \geqslant \theta_{k}(G) \\ & \text { with }=\text { for } k \leqslant 3 \end{aligned}$

Holonomy and Malcev Lie algebras

G f.g., $H=G_{\mathrm{abf}}=G_{\mathrm{ab}} /$ Tors	$\nabla_{G}=\cup_{G}^{\vee}: H^{2}(G ; \mathbb{Z})^{\vee} \rightarrow H \wedge H$
Holonomy Lie algebra	$\mathfrak{h}(G):=\operatorname{Lie}(H) / \operatorname{ideal}\left(\operatorname{im}\left(\nabla_{G}\right)\right.$)
This is a quadratic Lie algebra	$\begin{aligned} & \mathfrak{h}(G) \rightarrow \operatorname{gr}(G) \\ & \mathfrak{h}(G) / \mathfrak{h}(G)^{\prime \prime} \rightarrow \operatorname{gr}\left(G / G^{\prime \prime}\right) \end{aligned}$
Malcev Lie algebra	$\begin{aligned} & \mathfrak{m}(G):=\operatorname{Prim}(\widehat{\mathbb{Q}[G]}) \\ & \operatorname{gr}(\mathfrak{m}(G)) \cong \operatorname{gr}(G) \otimes \mathbb{Q} \end{aligned}$
G is 1-formal if $\quad \Longrightarrow$ $\mathfrak{m}(G) \cong \widehat{\mathfrak{h}(G)} \otimes \mathbb{Q}$	$\begin{aligned} & \mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q} \\ & \mathfrak{h}(G) / \mathfrak{h}(G)^{\prime \prime} \otimes \mathbb{Q} \xrightarrow{\sim} \operatorname{gr}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q} \end{aligned}$

Lie algebras of RAAGs

$$
\begin{aligned}
& \mathfrak{h}\left(G_{\Gamma}\right)=\operatorname{Lie}(V) /([v, w]=0) \\
& \text { if }\{v, w\} \in E \\
& P_{\Gamma}(t)=\sum_{n \geqslant 0} f_{n}(\Gamma) t^{n} \\
& f_{n}(\Gamma)=\#\{n \text {-cliques in } \Gamma\} \\
& \mathfrak{h}_{\Gamma} / \mathfrak{h}_{\Gamma}^{\prime \prime} \xrightarrow{\simeq} \operatorname{gr}\left(G_{\Gamma} / G_{\Gamma}^{\prime \prime}\right) \\
& \mathfrak{h}\left(G_{\Gamma}\right) \xrightarrow{\simeq} \operatorname{gr}\left(G_{\Gamma}\right) \\
& \operatorname{gr}\left(G_{\Gamma}\right) \text { torsion-free, ranks given by } \\
& \prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=\operatorname{Pr}(-t) \\
& \operatorname{gr}\left(G_{\Gamma} / G_{\Gamma}^{\prime \prime}\right) \text { torsion-free, ranks given by } \\
& \sum_{k=2}^{\infty} \theta_{k} t^{k}=Q_{\Gamma}(t /(1-t)) \\
& \text { where } Q_{\Gamma}(t)=\sum_{j \geqslant 2} c_{j}(\Gamma) t^{j} \quad \text { and } \quad c_{j}(\Gamma)=\sum_{W \subset V:|W|=j} \tilde{b}_{0}(\Gamma W) \\
& (\Gamma, \ell) \text { labeled graph } \\
& G_{\Gamma, \ell} \text { Artin group } \\
& \Gamma_{\sim}^{\text {odd }}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right), \mathrm{E}^{\prime}=\{e: \ell(e) \text { odd }\} \\
& \tilde{\Gamma}=(\widetilde{V}, \widetilde{E}): \widetilde{V}=\text { components of } \Gamma_{\text {odd }} \\
& \tilde{E} \text { induced edges from } E^{\prime} \\
& \mathfrak{m}\left(G_{\Gamma, \ell}\right) \cong \mathfrak{m}\left(G_{\widetilde{\Gamma}}\right)
\end{aligned}
$$

Lie algebras of hyperplane arrangements

$$
\mathfrak{h}(G)=\operatorname{Lie}\left(x_{H}: H \in \mathcal{A}\right) / \text { ideal }\left\{\left[x_{H}, \sum_{\substack{K \in \mathcal{A} \\ K \supset Y}} x_{K}\right]: H \in \mathcal{A}, Y \in L_{2}(\mathcal{A}), H \supset Y\right\}
$$

$\operatorname{gr}(G) \otimes \mathbb{Q} \cong \mathfrak{h}(G) \otimes \mathbb{Q}$
$\phi_{k}(G)$ determined by $L_{\leqslant 2}(\mathcal{A})$
$\operatorname{gr}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q} \cong \mathfrak{h}(G) / \mathfrak{h}(G)^{\prime \prime} \otimes \mathbb{Q}$
$\theta_{k}(G)$ determined by $L_{\leqslant 2}(\mathcal{A})$
\mathcal{A} supersolvable $\Longrightarrow \prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=\operatorname{Poin}(M(\mathcal{A}),-t)$
\mathcal{A} decomposable $\Longrightarrow \prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=(1-t)^{|\mathcal{A}|-\sum_{X \in L_{2}(\mathcal{A})} \mu(X)} \prod_{X \in L_{2}(\mathcal{A})}(1-\mu(X) t)$
$\mathfrak{h}_{3}(G) \xrightarrow{\simeq} \operatorname{gr}_{3}(G)$
$\mathrm{gr}_{k}(G)$ may have non-zero torsion for $k \gg 0$

Question: Is $\mathfrak{h}_{3}(G)$ torsion-free?

Question: Is the torsion in $\operatorname{gr}(G)$ combinatorially determined? Answer: No.
$\exists \mathcal{A}^{ \pm}$with $L\left(\mathcal{A}^{+}\right) \cong L\left(\mathcal{A}^{-}\right)$, yet $\operatorname{tors}\left(\mathrm{gr}_{4}\left(G^{+}\right)\right) \not \equiv \operatorname{tors}\left(\mathrm{gr}_{4}\left(G^{-}\right)\right)$

Alexander invariants

Alexander invariant	$B(G):=G^{\prime} / G^{\prime \prime}$ as $\mathbb{Z} G_{\mathrm{ab}}$-module via $g G^{\prime} \cdot x G^{\prime \prime}=g x g^{-1} G^{\prime \prime}\left(g \in G, x \in G^{\prime}\right)$				
If $\pi_{1}(X)=G$ and $X^{\mathrm{ab}} \rightarrow X$	$B(G)=H_{1}\left(X^{\mathrm{ab}}, \mathbb{Z}\right)=H_{1}\left(X, \mathbb{Z}\left[G_{\mathrm{ab}}\right]\right)$	$	$	Let $I=\operatorname{ker}\left(\varepsilon: \mathbb{Z}\left[G_{\mathrm{ab}}\right] \rightarrow \mathbb{Z}\right)$	$I^{k} B(G)=\gamma_{k+2}\left(G / G^{\prime \prime}\right)$, and so $\theta_{k}(G)=\operatorname{rankgr}_{k-2}(B(G)), \forall k \geqslant 2$
:---	:---				
Infinitesimal Alexander invari- ant	$\mathfrak{B}(G):=\mathfrak{h}(G)^{\prime} / \mathfrak{h}(G)^{\prime \prime}$, as module over $\operatorname{Sym}\left(G_{\mathrm{abf}}\right)=\operatorname{gr}\left(\mathbb{Z}\left[G_{\mathrm{abf}}\right]\right)$.				

Theorem

Let G be a 1-formal group. Then,
(1) $\widehat{B(G)} \otimes \mathbb{Q} \cong \widehat{\mathfrak{B}(G)} \otimes \mathbb{Q}$.
(2) $\operatorname{gr}(B(G)) \otimes \mathbb{Q} \cong \mathfrak{B}(G) \otimes \mathbb{Q}$.
(3) $\theta_{k}(G)=\operatorname{dim}_{\mathbb{Q}} \mathfrak{B}_{k-2}(G) \otimes \mathbb{Q}$ for $k \geqslant 2$.

Cohomology jump loci

Character group of $G=\pi_{1}(X)$	$\mathbb{T}_{G}:=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=H^{1}\left(X ; \mathbb{C}^{*}\right)$ $\mathbb{T}_{G} \cong \mathbb{T}_{G}^{0} \times \operatorname{tors}\left(G_{\mathrm{ab}}\right), \mathbb{T}_{G}^{0} \cong\left(\mathbb{C}^{*}\right)^{b_{1}(G)}$
Characteristic varieties	$\mathcal{V}_{s}^{i}(X):=\left\{\rho \in \mathbb{T}_{G}: \operatorname{dim} H_{i}\left(X ; \mathbb{C}_{\rho}\right) \geqslant s\right\}$ $\mathcal{W}_{s}^{i}(X):=\mathcal{V}_{s}^{i}(X) \cap \mathbb{T}_{G}^{0}$
$\mathcal{V}_{s}(G):=\mathcal{V}_{s}^{1}(X)$ depend only on $G / G^{\prime \prime}$	$\mathcal{V}_{s}(G)=\operatorname{supp}\left(\bigwedge^{s} B(G) \otimes \mathbb{C}\right)$ away from $1 \in \mathbb{T}_{G}$
$A=H^{*}(X ; \mathbb{C}), a \in A^{1} \sim$	$(A, \cdot a): A^{0} \xrightarrow{a} \rightarrow A^{1} \rightarrow a A^{2} \longrightarrow \cdots$
Resonance varieties	$\mathcal{R}_{s}^{i}(X):=\left\{a \in A^{1}: \operatorname{dim} H^{i}(A, \cdot a) \geqslant s\right\}$
$\mathcal{R}_{s}(G):=\mathcal{R}_{s}^{1}(X)$	$\mathcal{R}_{s}(G)=\operatorname{supp}\left(\bigwedge^{s} \mathfrak{B}(G) \otimes \mathbb{C}\right)$ away from $0 \in A^{1}$
If X is a k-formal:	$\operatorname{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathcal{R}_{s}^{i}(X)$ for $i \leqslant k$

Cohomology jump loci of Arrangements

The resonance varieties $\mathcal{R}_{s}^{i}(M)$ of $M=M(\mathcal{A})$ are finite unions of linear subspaces in $\mathbb{C}^{|\mathcal{A}|}$

The characteristic varieties $\mathcal{V}_{s}^{i}(M)$ are finite unions of torsiontranslated subtori of $\left(\mathbb{C}^{*}\right)^{|\mathcal{A}|}$

The components of $\mathcal{R}_{1}^{1}(M)$ correspond to multinets on subarrangements of \mathcal{A}. Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
M is an abelian duality space of dimension $r=\operatorname{rank}(\mathcal{A})$:
$H^{*}\left(X, \mathbb{Z} G_{\mathrm{ab}}\right)$ concentrated in deg r

The jump loci of \mathcal{A} propagate:
$\mathcal{R}_{1}^{1}(M) \subseteq \cdots \subseteq \mathcal{R}_{1}^{r}(M)$
$\mathcal{V}_{1}^{1}(M) \subseteq \cdots \subseteq \mathcal{V}_{1}^{r}(M)$

Cohomology jump loci of RAAGs

The resonance

 varieties of T_{L} are unions of coordinate subspaces inside $H_{V}:=H^{1}\left(T_{L} ; \mathbb{C}\right)$For a RAAG G_{Γ} :

$$
\mathcal{R}_{s}^{i}\left(T_{L}\right)=
$$

$W \subseteq V$
$\exists \sigma \in L_{\mathrm{V} \backslash \mathrm{W}}, \operatorname{dim} \tilde{H}_{i-1-|\sigma|}\left(\mathrm{Ik}_{L_{\mathrm{W}}}(\sigma), \mathbb{C}\right) \geqslant s$

$$
\mathcal{R}_{1}^{1}\left(G_{\Gamma}\right)=\bigcup_{\substack{\mathrm{W} \leq \mathrm{V} \\ \Gamma_{\mathrm{W}} \text { disconnected }}}
$$

The characteristic varieties of T_{L} and G_{Γ} are unions of coordinate subtori $\mathbb{T}_{\mathrm{W}} \subset T_{\mathrm{V}}$, on same indexing sets
T_{L} is an abelian duality space \Longleftrightarrow
L is Cohen-Macaulay
$L C M \Longrightarrow$ resonance varieties of L propagate Question: Is the converse true?

Almost direct products

Theorem (Falk-Randell 1985/88)
Let $G=K \rtimes_{\varphi} Q$. If Q acts trivially on K_{ab}, then

- $\operatorname{gr}(G)=\operatorname{gr}(K) \rtimes \tilde{\varphi} \operatorname{gr}(Q)$, where $\tilde{\varphi}: \operatorname{gr}(Q) \rightarrow \operatorname{Der}(\operatorname{gr}(K))$.
- If K and Q are residually nilpotent, then G is residually nilpotent.

Theorem

Let $G=K \rtimes_{\varphi} Q$. If Q acts trivially on $K_{\mathrm{abf}}:=K_{\mathrm{ab}} /$ Tors, then

- $\operatorname{gr}(G) \otimes \mathbb{Q} \cong\left(\operatorname{gr}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)\right) \otimes \mathbb{Q}$.
- If K and Q are RTFN, then G is RTFN.

If K_{abf} is f.g., Q is torsion-free abelian, and Q acts trivially on $H_{1}(K ; \mathbb{Q})$, then

- $\operatorname{gr}_{\geqslant 2}(K) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}_{\geqslant 2}(G) \otimes \mathbb{Q}$, and so $\phi_{k}(K)=\phi_{k}(G)$ for $k \geqslant 2$.
- $\mathrm{gr}_{\geqslant 2}\left(K / K^{\prime \prime}\right) \otimes \mathbb{Q} \xrightarrow{\simeq} \mathrm{gr}_{\geqslant 2}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q}$, and so $\theta_{k}(K)=\theta_{k}(G)$ for $k \geqslant 2$.

Theorem

Let $1 \rightarrow K \stackrel{\iota}{\rightarrow} G \rightarrow Q \rightarrow 1$ be an exact sequence of f.g. groups.

- If Q is abelian and acts trivially on K_{ab}, then $\iota^{*}: \mathbb{T}_{G} \rightarrow \mathbb{T}_{K}$ restricts to maps $\iota^{*}: \mathcal{V}_{s}^{1}(G) \rightarrow \mathcal{V}_{s}^{1}(K)$ for all $s \geqslant 1$; furthermore, $\iota^{*}: \mathcal{V}_{1}^{1}(G) \rightarrow \mathcal{V}_{1}^{1}(K)$ is a surjection.
- If Q is torsion-free abelian and acts trivially on $H_{1}(K ; \mathbb{Q})$, then $\iota^{*}: \mathbb{T}_{G}^{0} \rightarrow \mathbb{T}_{K}^{0}$ restricts to maps $\iota^{*}: \mathcal{W}_{s}^{1}(G) \rightarrow \mathcal{W}_{s}^{1}(K)$ for all $s \geqslant 1$; furthermore, $\iota^{*}: \mathcal{W}_{1}^{1}(G) \rightarrow \mathcal{W}_{1}^{1}(K)$ is a surjection.

Theorem

Let $1 \rightarrow K \xrightarrow{\iota} G \rightarrow Q \rightarrow 1$ be an exact sequence of f.g. groups. Suppose G and K are 1-formal, Q is torsion-free abelian, and Q acts trivially on $H_{1}(K ; \mathbb{Q})$. Then $\iota^{*}: H^{1}(G ; \mathbb{C}) \rightarrow H^{1}(K ; \mathbb{C})$ restricts to maps $\iota^{*}: \mathcal{R}_{s}^{1}(G) \rightarrow \mathcal{R}_{s}^{1}(K)$ for all $s \geqslant 1$; furthermore, $\iota^{*}: \mathcal{R}_{1}^{1}(G) \rightarrow \mathcal{R}_{1}^{1}(K)$ is surjective.

Bestvina-Brady groups

Theorem (Papadima-S. 2007/2009, S. 2021)

Suppose $\Gamma=(\mathrm{V}, \mathrm{E})$ is connected. Then

- In the split exact sequence $1 \rightarrow N_{\Gamma} \xrightarrow{\iota} G_{\Gamma} \xrightarrow{\pi} \mathbb{Z} \rightarrow 1$, the group \mathbb{Z} acts trivially on $\left(N_{\Gamma}\right)_{\mathrm{ab}}$.
- $g r_{\geqslant 2}\left(N_{\Gamma}\right) \cong g r_{\geqslant 2}\left(G_{\Gamma}\right)$. and $g r_{\geqslant 2}\left(N_{\Gamma} / N_{\Gamma}^{\prime \prime}\right) \cong g r_{\geqslant 2}\left(G_{\Gamma} / G_{\Gamma}^{\prime \prime}\right)$.
- $\phi_{k}\left(N_{\Gamma}\right)=\phi_{k}\left(G_{\Gamma}\right)$ and $\theta_{k}\left(N_{\Gamma}\right)=\theta_{k}\left(G_{\Gamma}\right)$ for all $k \geqslant 2$.
- If $\kappa(\Gamma)=1$, then $\mathcal{V}_{1}^{1}\left(N_{\Gamma}\right)=\operatorname{Hom}\left(N_{\Gamma}, \mathbb{C}^{*}\right)$ and $\mathcal{R}_{1}^{1}\left(N_{\Gamma}\right)=H^{1}\left(N_{\Gamma} ; \mathbb{C}\right)$.
- If $\kappa(\Gamma)>1$, then the irreducible components of $\mathcal{V}_{1}^{1}\left(N_{\Gamma}\right)$, respectively $\mathcal{R}_{1}^{1}\left(N_{\Gamma}\right)$, are the subtori $\mathbb{T}_{W}^{\prime}=\iota^{*}\left(\mathbb{T}_{\mathrm{W}}\right)$, respectively the subspaces $H_{\mathrm{W}}^{\prime}=\iota^{*}\left(H_{\mathrm{W}}\right)$, of dimension $|\mathrm{W}|$, one for each subset $\mathrm{W} \subset \mathrm{V}$, maximal among those for which the induced subgraph Γ_{W} is disconnected.

Milnor fibrations with trivial algebraic monodromy

Theorem

Let $(\mathcal{A}, \mathrm{m})$ be a multi-arrangement, and let F_{m} be its Milnor fiber.
Suppose $h_{*}: H_{1}\left(F_{\mathrm{m}} ; \mathbb{Z}\right) \rightarrow H_{1}\left(F_{\mathrm{m}} ; \mathbb{Z}\right)$ is the identity. Then

- $g r_{\geqslant 2}\left(\pi_{1}\left(F_{\mathrm{m}}\right)\right) \cong \mathrm{gr}_{\geqslant 2}\left(\pi_{1}(M)\right)$.
- $\operatorname{gr}_{\geqslant 2}\left(\pi_{1}\left(F_{\mathrm{m}}\right) / \pi_{1}\left(F_{\mathrm{m}}\right)^{\prime \prime}\right) \cong \mathrm{gr}_{\geqslant 2}\left(\pi_{1}(M) / \pi_{1}(M)^{\prime \prime}\right)$.

Theorem

Suppose $h_{*}: H_{1}\left(F_{\mathrm{m}} ; \mathbb{Q}\right) \rightarrow H_{1}\left(F_{\mathrm{m}} ; \mathbb{Q}\right)$ is the identity. Then

- $g r_{\geqslant 2}\left(\pi_{1}\left(F_{\mathrm{m}}\right)\right) \otimes \mathbb{Q} \cong \mathrm{gr}_{\geqslant 2}\left(\pi_{1}(M)\right) \otimes \mathbb{Q}$.
- $\mathrm{gr}_{\geqslant 2}\left(\pi_{1}\left(F_{\mathrm{m}}\right) / \pi_{1}\left(F_{\mathrm{m}}^{\prime \prime}\right)\right) \otimes \mathbb{Q} \cong \mathrm{gr}_{\geqslant 2}\left(\pi_{1}(M) / \pi_{1}(M)^{\prime \prime}\right) \otimes \mathbb{Q}$.

Hence, $\phi_{k}\left(\pi_{1}\left(F_{\mathrm{m}}\right)\right)=\phi_{k}\left(\pi_{1}(M)\right)$ and $\theta_{k}\left(\pi_{1}\left(F_{\mathrm{m}}\right)\right)=\theta_{k}\left(\pi_{1}(M)\right), \forall k \geqslant 2$.

Theorem

Let $\sigma_{\mathrm{m}}: F_{\mathrm{m}} \rightarrow U=\mathbb{P}(M)$ be the restriction of $M \rightarrow \mathbb{P}(M)$. Suppose the monodromy $h: F_{\mathrm{m}} \rightarrow F_{\mathrm{m}}$ induces the identity on $H_{1}\left(F_{\mathrm{m}} ; \mathbb{Q}\right)$. Then,

- The induced homomorphism $\sigma_{\mathrm{m}}^{*}: H^{1}(U ; \mathbb{C}) \rightarrow H^{1}\left(F_{\mathrm{m}} ; \mathbb{C}\right)$ is an isomorphism that identifies $\mathcal{R}_{s}^{1}(U)$ with $\mathcal{R}_{s}^{1}\left(F_{\mathrm{m}}\right)$, for all $s \geqslant 1$.
- The induced homomorphism $\sigma_{\mathrm{m}}^{*}: H^{1}\left(U ; \mathbb{C}^{*}\right) \rightarrow H^{1}\left(F_{\mathrm{m}} ; \mathbb{C}^{*}\right)^{0}$ is a surjection with kernel isomorphic to \mathbb{Z}_{N}. Moreover,
- For each $s \geqslant 1$, the map σ_{m}^{*} establishes a bijection between the sets of irreducible components of $\mathcal{V}_{s}^{1}(U)$ and $\mathcal{W}_{s}^{1}\left(F_{\mathrm{m}}\right)$ that pass through the identity.
- The map $\sigma_{\mathrm{m}}^{*}: \mathcal{V}_{1}^{1}(U) \rightarrow \mathcal{W}_{1}^{1}\left(F_{\mathrm{m}}\right)$ is a surjection.

Alexander invariants of arrangements

- Alexander invariant: $B(\mathcal{A}):=B(G(\mathcal{A}))=G^{\prime} / G^{\prime \prime}$, viewed as a module over $R=\mathbb{Z}\left[G_{\mathrm{ab}}\right]=\mathbb{Z}\left[H_{1}(M ; \mathbb{Z})\right]$.
- [Cohen-S. 1999] The homomorphisms $j_{\sharp}^{X}: G(\mathcal{A}) \rightarrow G\left(\mathcal{A}_{X}\right)$ induce a surjective R-morphism, $\Pi: B(\mathcal{A}) \rightarrow B(\mathcal{A})^{\text {loc }}:=\bigoplus_{x \in L_{2}(\mathcal{A})} B\left(\mathcal{A}_{X}\right)$.
- Infinitesimal Alexander invariant: $\mathfrak{B}(\mathcal{A}):=\mathfrak{B}(G(\mathcal{A}))=\mathfrak{h}^{\prime}(\mathcal{A}) / \mathfrak{h}^{\prime \prime}(\mathcal{A})$, viewed as a module over $S=\operatorname{Sym}\left[G_{\mathrm{ab}}\right] \cong \operatorname{gr}(R)$.
- There is an epimorphism of graded S-modules, $\bar{\Pi}: \mathfrak{B}(\mathcal{A}) \rightarrow \mathfrak{B}(\mathcal{A})^{\text {loc }}$.
- Hence, the Chen ranks of \mathcal{A} admit the lower bound

$$
\theta_{k}(G(\mathcal{A})) \geqslant(k-1) \sum_{X \in L_{2}(\mathcal{A})}\binom{\mu(X)+k-2}{k}
$$

valid for all $k \geqslant 2$, with equality for $k=2$.

Decomposable arrangements

- For each flat $X \in L(\mathcal{A})$, let $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid H \supset X\}$.
- The inclusions $\mathcal{A}_{X} \subset \mathcal{A}$ give rise to maps $M(\mathcal{A}) \hookrightarrow M\left(\mathcal{A}_{X}\right)$; get map

$$
j: M(\mathcal{A}) \longrightarrow \prod_{X \in L_{2}(\mathcal{A})} M\left(\mathcal{A}_{X}\right)
$$

- The induced homomorphism on π_{1} yields a morphism

$$
\mathfrak{h}\left(j_{\sharp}\right): \mathfrak{h}(G) \longrightarrow \prod_{X \in L_{2}(\mathcal{A})} \mathfrak{h}\left(G_{X}\right)=: \mathfrak{h}(G)^{\operatorname{loc}} .
$$

ThEOREM (PAPADIMA-S. 2006)

The map $\mathfrak{h}_{k}\left(j_{\sharp}\right)$ is a surjection for each $k \geqslant 3$ and an iso for $k=2$.

DEFINITION

\mathcal{A} is decomposable if the map $\mathfrak{h}_{3}\left(j_{\sharp}\right)$ is an isomorphism; that is, $\mathfrak{h}_{3}(G)$ is free abelian of rank as small as possible, namely, $\sum_{X \in L_{2}\left(\mathcal{A}_{X}\right)}\binom{\mu(X)}{2}$.

- A similar definition works over \mathbb{Q} (or any field \mathbb{k}).
- Question: are decomposability and \mathbb{Q}-decomposability equivalent?
- If \mathcal{A} is decomposable, and $\mathcal{B} \subset \mathcal{A}$, then \mathcal{B} is decomposable.
- Let $\mathcal{A}(\Gamma)=\left\{z_{i}-z_{j}=0:(i, j) \in \mathrm{E}(\Gamma)\right\}$ be a graphic arrangement. Then $\mathcal{A}(\Gamma)$ is decomposable if and only if Γ contains no K_{4} subgraph.

Theorem (Papadima-S. 2006)

Let \mathcal{A} be a decomposable arrangement, with group $G=G(\mathcal{A})$. Then:

- $\mathfrak{h}^{\prime}\left(j_{\sharp}\right): \mathfrak{h}^{\prime}(G) \rightarrow \mathfrak{h}^{\prime}(G)^{\text {loc }}$ is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$ is an isomorphism.
- For each $k \geqslant 2$, the $\operatorname{group} \operatorname{gr}_{k}(G)$ is free abelian of rank

$$
\phi_{k}(G)=\sum_{X \in L_{2}(\mathcal{A})} \phi_{k}\left(F_{\mu(X)}\right) .
$$

ThEOREM (PAPADIMA-S. 2006)

Let \mathcal{A} be a decomposable arrangement, with group $G=G(\mathcal{A})$. Then:

- $\operatorname{gr}\left(G / G^{\prime \prime}\right)=\mathfrak{h}(G) / \mathfrak{h}^{\prime \prime}(G)$, as graded Lie algebras over \mathbb{Z}.
- $\operatorname{gr}\left(G / G^{\prime \prime}\right)$ is torsion-free, as a graded abelian group.
- The Chen ranks of G, for $k \geqslant 2$, are given by

$$
\theta_{k}(G)=\sum_{X \in L_{2}(\mathcal{A})} \theta_{k}\left(F_{\mu(X)}\right) .
$$

Theorem (Porter-S. 2020)

Let \mathcal{A} and \mathcal{B} be decomposable arrangements with $L_{\leqslant 2}(\mathcal{A}) \cong L_{\leqslant 2}(\mathcal{B})$.
Then, for each $k \geqslant 2$,

$$
G(\mathcal{A}) / \gamma_{k}(G(\mathcal{A})) \cong G(\mathcal{B}) / \gamma_{k}(G(\mathcal{B}))
$$

- The Alexander invariant of \mathcal{A} decomposes if the map $\Pi: B(\mathcal{A}) \rightarrow B(\mathcal{A})^{\text {loc }}$ is an isomorphism. (Similarly over \mathbb{Q}.)
- The infinitesimal Alexander invariant of \mathcal{A} decomposes if the map $\bar{\Pi}: \mathfrak{B}(\mathcal{A}) \rightarrow \mathfrak{B}(\mathcal{A})^{\text {loc }}$ is an isomorphism. (Similarly over \mathbb{Q}.)
- The R-module $B=B(\mathcal{A})$ is separated if $\bigcap_{k \geqslant 1} I^{k} B=\{0\}$, or, equivalently, the map $B \rightarrow \widehat{B}$ is injective.
- If $G(\mathcal{A})$ is residually nilpotent, then $B(\mathcal{A})$ is separated.

Theorem

- If \mathcal{A} is decomposable, then $\mathfrak{B}(\mathcal{A})$ is decomposable.
- If \mathcal{A} is \mathbb{Q}-decomposable, then $\mathfrak{B}(\mathcal{A})$ and $\widehat{B(\mathcal{A})}$ are \mathbb{Q}-decomposable.
- If \mathcal{A} is \mathbb{Q}-decomposable and $B(\mathcal{A}) \otimes \mathbb{Q}$ is separated, then $B(\mathcal{A})$ is \mathbb{Q}-decomposable.

Corollary

If \mathcal{A} is \mathbb{Q}-decomposable and $B(\mathcal{A}) \otimes \mathbb{Q}$ is separated, then the monodromy action on $H_{1}(F(\mathcal{A}) ; \mathbb{Q})$ is trivial.

FALK'S PAIR OF ARRANGEMENTS

- Both \mathcal{A} and $\hat{\mathcal{A}}$ have 2 triple points and 9 double points, yet $L(\mathcal{A}) \not \equiv L(\hat{\mathcal{A}})$. Nevertheless, $M(\mathcal{A}) \simeq M(\hat{\mathcal{A}})$.
- Both arrangements are decomposable, and their Milnor fibrations have trivial \mathbb{Z}-monodromy.
- Nevertheless, $K=\pi_{1}(F)$ is not isomorphic to $\hat{K}=\pi_{1}(\hat{F})$. In fact:
- $K / K^{\prime \prime} \nsupseteq \hat{K} / \hat{K}^{\prime \prime}$, since $\mathcal{V}_{2}^{1}(K) \cong \mathbb{Z}_{3}$, yet $\mathcal{V}_{2}^{1}(\hat{K})=\{1\}$.
- $K / \gamma_{3}(K) \not \equiv \hat{K} / \gamma_{3}(\hat{K})$, since $H_{2}\left(K / \gamma_{3}(K) ; \mathbb{Z}\right)=\mathbb{Z}_{3}$, yet $H_{2}\left(\hat{K} / \gamma_{3}(\hat{K}) ; \mathbb{Z}\right)=0$.

References

A.I. Suciu, Alexander invariants and cohomology jump loci in group extensions, to appear in Ann. Sc. Norm. Super. Pisa (2024), doi, arxiv:2107.05148,

囯 A.I. Suciu, Lower central series and split extensions, preprint (2022), arxiv:2105.14129.

E- A.I. Suciu, Milnor fibrations of arrangements with trivial algebraic monodromy, preprint (2024), arxiv:2402.03619
A.I. Suciu, On the topology and combinatorics of decomposable arrangements, preprint (2024).

