Artin kernels and Milnor fibrations of arrangements

Alexandru Suciu

Northeastern University

Workshop on Artin groups and arrangements: topology, geometry, and combinatorics

SLMath, Berkeley

March 15, 2024

RAAGs and arrangements: A comparison

Simplicial complex $L \subset 2^{[n]}$	Toric complex $T_L \subset T^n$ #k-cells = b_k , dim T_L = dim $L + 1$
Graph $\Gamma = (V, E) = L^{(1)}$	$\begin{array}{l} RAAG \ G_{\Gamma} = \pi_1(T_L) = \\ \big\langle v \in V : [v, w] = 1 \ if \ \{v, w\} \in E \big\rangle \end{array}$
Flag complex Δ_{Γ}	Classifying space $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$ Hence, G_{Γ} is torsion-free
Cohomology ring $H^*(T_L; \Bbbk)$	Exterior Stanley–Reisner ring $\Bbbk \langle L \rangle = \bigwedge (e_{\nu})/(e_{\sigma} : \sigma \notin L)$
L flag complex	$\mathbb{K}\langle L \rangle$ Koszul algebra
T_L formal over $\mathbb Q$ and $\mathbb Z$	$\begin{array}{l} \mathcal{A}_{\mathrm{PL}}(\mathcal{T}_L) \simeq_{\mathrm{CDGA}} \mathcal{H}^*(X;\mathbb{Q}) \\ \mathcal{C}^*(\mathcal{T}_L;\mathbb{Z}) \simeq_{\mathrm{DGA}} \mathcal{H}^*(X;\mathbb{Z}) \\ \text{Hence, } \mathcal{G}_{\Gamma} \text{ is 1-formal} \end{array}$

Arrangement $\mathcal A$ in $\mathbb C^d$	Lattice $L(\mathcal{A}) = \{\bigcap_{H \in \mathcal{B}} H : \mathcal{B} \subset \mathcal{A}\}$	
Defining polynomial $f = \prod_{H \in \mathcal{A}} f_H$, ker $(f_H) = H$	Complement $M(\mathcal{A}) = \mathbb{C}^d \setminus \bigcup_{H \in \mathcal{A}} H$ Minimal cell structure, dim $\leq d$	
$G(\mathcal{A}) = \pi_1(M(\mathcal{A}))$, gens $\{x_H\}_{H \in \mathcal{A}}$, commutator rels	No finite $K(G(A), 1)$ in general ls $G(A)$ torsion-free?	
Cohomology $H^*(M(\mathcal{A});\mathbb{Z})$ is torsion-free	Orlik–Solomon algebra $A = \bigwedge (e_H) / (\partial e_X : \operatorname{codim}(X) < X)$	
$b_k(M) = \sum_{X \in L_k(\mathcal{A})} (-1)^k \mu(X)$	$\begin{array}{l} \mu \colon L(\mathcal{A}) \to \mathbb{Z} \text{ defined by } \mu(\mathbb{C}^d) = 1 \\ \text{and } \mu(X) = -\sum_{Y \supsetneq X} \mu(Y) \end{array}$	
${\mathcal A}$ supersolvable \implies	A Koszul algebra	
$M(\mathcal{A})$ formal over $\mathbb Q$	$ \begin{array}{l} H^*(X;\mathbb{R}) \to \Omega_{\mathrm{dR}}(M(\mathcal{A})) \text{ q-iso} \\ H^k(X;\mathbb{C}) \text{ has pure MHS, type } (k,k) \\ \mathrm{Hence, } G(\mathcal{A}) \text{ is 1-formal} \end{array} $	
$M(\mathcal{A})$ not formal over \mathbb{Z}_p	Massey products in $H^2(G(\mathcal{A});\mathbb{Z}_p)$	
Alex Suciu Artin kern	ELS AND MILNOR FIBRATIONS SLMATH $3/15/2024$ $3/20$	

Artin kernels and Milnor fibers: A comparison

Weights m_v on vertices of $\Gamma = L^{(1)}$	Homomorphism $\chi: G_{\Gamma} \to \mathbb{Z}, \chi(v) = m_v$ Surjective if $gcd(m_v) = 1$	
Cover $T_L^{\chi} \to T_L$	Artin kernel $N_{\chi} = \pi_1(T_L^{\chi}) = \ker(\chi)$	
$m_v = 1$ for all $v \in V$	Bestvina–Brady group <i>N</i> _F	
Γ connected N_{Γ} finitely generated		
Δ_{Γ} simply connected N_{Γ} finitely presented		
If $H_i(T_L^{\chi}; \Bbbk) \Bbbk \mathbb{Z}$ -trivial, for $i \leq r$: $H^{\leq r}(T_L^{\chi}; \Bbbk) = H^{\leq r}(T_L; \Bbbk)/(\chi_k)$		

Weights \mathfrak{m}_H on $H \in \mathcal{A}$	Polynomial $f_{\rm m} = \prod_{H \in \mathcal{A}} f_H^{m_H}$
Milnor fibration	$f_{m} \colon \mathcal{M}(\mathcal{A}) \to \mathbb{C}^*$
Milnor fiber	$F_{\rm m} = f_{\rm m}^{-1}(1); \ F(\mathcal{A}) = f^{-1}(1)$
Monodromy $(N = \sum_{H \in \mathcal{A}} m_H)$	$h: F_{\rm m} \rightarrow F_{\rm m}, \ h(z) = e^{2\pi i/N} z$
$F_{\rm m}$ finite complex, dim $\leq d-1$	$F_{\rm m}$ connected if $gcd(m_H) = 1$
$\chi: G(\mathcal{A}) \twoheadrightarrow \mathbb{Z}, \ \chi(x_H) = m_H$	$ \begin{split} F_{m} &\simeq M^{\chi}, \ \pi_1(F_{m}) = \ker(\chi) \\ F_{m} &\to \mathbb{P}(M) \ \text{a regular } \mathbb{Z}_N \text{-cover} \end{split} $
$H_*(F_m;\mathbb{Z})$ may have torsion	Even $H_1(F(\mathcal{A});\mathbb{Z})$ may have torsion
${m {F}}({\cal A})$ not always 1-formal	$H^1(F(\mathcal{A});\mathbb{C})$ may be non-pure

THEOREM

Let \mathcal{A} be an arrangement of lines in \mathbb{C}^2 , with group $G = G(\mathcal{A})$. The following are equivalent:

- (1) G is a right-angled Artin group.
- (2) G is a finite direct product of finitely generated free groups.

(3) The multiplicity graph of A is a forest.

- There exist graphs Γ such that the Bestvina–Brady group N_{Γ} is finitely presented, yet not isomorphic to either an Artin group $G_{\Gamma'}$, or an arrangement group $G(\mathcal{A})$.
- There exist arrangements \mathcal{A} such that $G(\mathcal{A}) \cong N_{\Gamma}$ for some graph Γ , but $G(\mathcal{A}) \ncong G_{\Gamma'}$ for any graph Γ' .

Associated graded and Chen Lie Algebras

Lower central series	$\gamma_1(G) = G, \gamma_2(G) = G'$ $\gamma_{k+1}(G) = [G, \gamma_k(G)]$
It is a normal, central series	$[\gamma_k(\mathcal{G}), \gamma_\ell(\mathcal{G})] \subseteq \gamma_{k+\ell}(\mathcal{G})$
Associated graded Lie algebra	$gr(\mathcal{G}) = \bigoplus_{k \geqslant 1} \gamma_k(\mathcal{G}) / \gamma_{k+1}(\mathcal{G})$
Chen Lie algebra	$\operatorname{gr}(G/G'')$
If G finitely generated, then $gr_k(G)$ f.g. (abelian) groups	LCS ranks: $\phi_k(G) = \operatorname{rank} \operatorname{gr}_k(G)$ Chen ranks: $\theta_k(G) = \operatorname{rank} \operatorname{gr}_k(G/G'')$
$\operatorname{gr}_k(G) \twoheadrightarrow \operatorname{gr}_k(G/G'')$ iso for $k \leq 3$	$\phi_k(G) \ge \theta_k(G)$ with = for $k \le 3$

7/26

HOLONOMY AND MALCEV LIE ALGEBRAS

$G \text{ f.g., } H = G_{abf} = G_{ab}/\text{ Tors}$	$\nabla_G = \cup_G^{\vee} \colon H^2(G;\mathbb{Z})^{\vee} \to H \wedge H$
Holonomy Lie algebra	$\mathfrak{h}(G) := Lie(H)/ideal(im(\nabla_G))$
This is a quadratic Lie algebra	$\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ $\mathfrak{h}(G)/\mathfrak{h}(G)'' \twoheadrightarrow \mathfrak{gr}(G/G'')$
Malcev Lie algebra	$\mathfrak{m}(G) := \operatorname{Prim}(\widehat{\mathbb{Q}[G]})$ $\operatorname{gr}(\mathfrak{m}(G)) \cong \operatorname{gr}(G) \otimes \mathbb{Q}$
$ \begin{array}{c} G \text{ is 1-formal if} \\ \mathfrak{m}(G) \cong \widehat{\mathfrak{h}(G)} \otimes \mathbb{Q} \end{array} $	$ \begin{array}{c} \mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \mathfrak{gr}(G) \otimes \mathbb{Q} \\ \mathfrak{h}(G)/\mathfrak{h}(G)'' \otimes \mathbb{Q} \xrightarrow{\simeq} \mathfrak{gr}(G/G'') \otimes \mathbb{Q} \end{array} $

LIE ALGEBRAS OF RAAGS

$ \begin{aligned} \mathfrak{h}(G_{\Gamma}) &= Lie(V)/([v, w] = 0) \\ if \{v, w\} \in E \end{aligned} $	$ \begin{aligned} \mathfrak{h}(G_{\Gamma}) &\xrightarrow{\simeq} \operatorname{gr}(G_{\Gamma}) \\ \operatorname{gr}(G_{\Gamma}) \text{ torsion-free, ranks given by} \end{aligned} $
$P_{\Gamma}(t) = \sum_{n \ge 0} f_n(\Gamma) t^n$ $f_n(\Gamma) = \#\{n \text{-cliques in } \Gamma\}$	$\prod_{k=1}^{\infty} (1-t^k)^{\phi_k} = P_{\Gamma}(-t)$
$\mathfrak{h}_{\Gamma}/\mathfrak{h}_{\Gamma}'' \xrightarrow{\simeq} \operatorname{gr}(G_{\Gamma}/G_{\Gamma}'')$	$\begin{array}{l} \operatorname{gr}(G_{\Gamma}/G_{\Gamma}'') \text{ torsion-free, ranks given by} \\ \sum_{k=2}^{\infty} \theta_k t^k = Q_{\Gamma}(t/(1-t)) \end{array}$
where $Q_{\Gamma}(t) = \sum_{j \ge 2} c_j(\Gamma) t^j$	and $c_j(\Gamma) = \sum_{W \subset V : W =j} \tilde{b}_0(\Gamma_W)$
(Γ, ℓ) labeled graph $G_{\Gamma, \ell}$ Artin group	$ \begin{array}{l} \Gamma_{odd} = (V, E'), E' = \{e: \ell(e) \text{ odd} \} \\ \widetilde{\Gamma} = (\widetilde{V}, \widetilde{E}): \widetilde{V} = \text{components of } \Gamma_{odd} \\ \widetilde{E} \text{ induced edges from } E' \end{array} $
$\mathfrak{m}(G_{\Gamma,\ell}) \cong \mathfrak{m}(G_{\widetilde{\Gamma}})$	$ \begin{aligned} \phi_k(G_{\Gamma,\ell}) &= \phi_k(G_{\widetilde{\Gamma}}) \\ \theta_k(G_{\Gamma,\ell}) &= \theta_k(G_{\widetilde{\Gamma}}) \end{aligned} $
Alex Suciu Artin kerne	LS AND MILNOR FIBRATIONS SLMATH $3/15/2024$ $9/26$

$\mathfrak{h}(G) = Lie(x_H : H \in \mathcal{A}) \Big/ ideal \left\{ \Big[x_H, \sum_{\substack{K \in \mathcal{A} \\ K \supset Y}} x_K \Big] : H \in \mathcal{A}, Y \in L_2(\mathcal{A}), H \supset Y \right\}$		
$gr(G) \otimes \mathbb{Q} \cong \mathfrak{h}(G) \otimes \mathbb{Q}$ $\phi_k(G) \text{ determined by } L_{\leq 2}(\mathcal{A})$	$ \begin{array}{l} gr(\mathcal{G}/\mathcal{G}'')\otimes\mathbb{Q} \cong \mathfrak{h}(\mathcal{G})/\mathfrak{h}(\mathcal{G})''\otimes\mathbb{Q} \\ \theta_k(\mathcal{G}) \text{ determined by } L_{\leqslant 2}(\mathcal{A}) \end{array} $	
\mathcal{A} supersolvable $\implies \prod_{k=1}^{\infty} (1-t^k)^{\phi_k} = Poin(M(\mathcal{A}), -t)$		
$\mathcal{A} \text{ decomposable} \Longrightarrow \prod_{k=1}^{\infty} (1-t^k)^{\phi_k} = (1-t)^{ \mathcal{A} - \sum_{X \in L_2(\mathcal{A})} \mu(X)} \prod_{X \in L_2(\mathcal{A})} (1-\mu(X)t)$		
$\mathfrak{h}_3(G) \xrightarrow{\simeq} \operatorname{gr}_3(G)$	Question: Is $\mathfrak{h}_3(G)$ torsion-free?	
$gr_k(G)$ may have non-zero torsion for $k \gg 0$	Question: Is the torsion in $gr(G)$ combinatorially determined? Answer: No.	

 $\exists \ \mathcal{A}^{\pm} \text{ with } L(\mathcal{A}^{+}) \cong L(\mathcal{A}^{-}), \text{ yet } \operatorname{tors}(\operatorname{gr}_{4}(G^{+})) \ncong \operatorname{tors}(\operatorname{gr}_{4}(G^{-}))$

ALEXANDER INVARIANTS

Alexander invariant	$\begin{array}{l} B(G) := G'/G'' \text{ as } \mathbb{Z}G_{ab}\text{-module via} \\ gG' \cdot xG'' = gxg^{-1}G'' \ (g \in G, \ x \in G') \end{array}$
If $\pi_1(X) = G$ and $X^{ab} \to X$	$B(G) = H_1(X^{ab}, \mathbb{Z}) = H_1(X, \mathbb{Z}[G_{ab}])$
Let $I = \ker(\varepsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z})$	$I^k B(G) = \gamma_{k+2}(G/G'')$, and so $\theta_k(G) = \operatorname{rank} \operatorname{gr}_{k-2}(B(G)), \forall k \ge 2$
Infinitesimal Alexander invari- ant	$\mathfrak{B}(G) := \mathfrak{h}(G)'/\mathfrak{h}(G)'', \text{ as module} \\ \text{over Sym}(G_{abf}) = gr(\mathbb{Z}[G_{abf}]).$

THEOREM

Let G be a 1-formal group. Then, (1) $\widehat{B(G)} \otimes \mathbb{Q} \cong \widehat{\mathfrak{B}(G)} \otimes \mathbb{Q}$. (2) $\operatorname{gr}(B(G)) \otimes \mathbb{Q} \cong \mathfrak{B}(G) \otimes \mathbb{Q}$. (3) $\theta_k(G) = \dim_{\mathbb{Q}} \mathfrak{B}_{k-2}(G) \otimes \mathbb{Q}$ for $k \ge 2$.

COHOMOLOGY JUMP LOCI

Character group of $G = \pi_1(X)$	$ \begin{split} \mathbb{T}_G &:= \operatorname{Hom}(G, \mathbb{C}^*) = H^1(X; \mathbb{C}^*) \\ \mathbb{T}_G &\cong \mathbb{T}_G^0 \times \operatorname{tors}(G_{\operatorname{ab}}), \mathbb{T}_G^0 \cong (\mathbb{C}^*)^{b_1(G)} \end{split} $
Characteristic varieties	$\mathcal{V}_{s}^{i}(X) := \left\{ \rho \in \mathbb{T}_{G} : \dim H_{i}(X; \mathbb{C}_{\rho}) \geq s \right\}$ $\mathcal{W}_{s}^{i}(X) := \mathcal{V}_{s}^{i}(X) \cap \mathbb{T}_{G}^{0}$
$\mathcal{V}_{s}(G) := \mathcal{V}^{1}_{s}(X)$ depend only on G/G''	$\mathcal{V}_{s}(G) = \operatorname{supp}\left(\bigwedge^{s} B(G) \otimes \mathbb{C}\right)$ away from $1 \in \mathbb{T}_{G}$
$A = H^*(X; \mathbb{C}), a \in A^1 \rightsquigarrow$	$(A, \cdot a) \colon A^0 \xrightarrow{\cdot a} A^1 \xrightarrow{\cdot a} A^2 \longrightarrow \cdots$
Resonance varieties	$\mathcal{R}^i_s(X) \coloneqq \{a \in A^1 : \dim H^i(A, \cdot a) \ge s\}$
$\mathcal{R}_{s}(G) \coloneqq \mathcal{R}^{1}_{s}(X)$	$\mathcal{R}_{s}(G) = \operatorname{supp}\left(\bigwedge^{s} \mathfrak{B}(G) \otimes \mathbb{C}\right)$ away from $0 \in A^{1}$
If X is a <i>k</i> -formal:	$TC_1(\mathcal{V}^i_s(X)) = \mathcal{R}^i_s(X) \text{ for } i \leqslant k$

ALEX SUCIU

The resonance varieties $\mathcal{R}^i_s(M)$ of	The characteristic varieties $\mathcal{V}_{s}^{i}(M)$
$M = M(\mathcal{A})$ are finite unions of	are finite unions of torsion-
linear subspaces in $\mathbb{C}^{ \mathcal{A} }$	translated subtori of $(\mathbb{C}^*)^{ \mathcal{A} }$

The components of $\mathcal{R}_1^1(M)$ correspond to *multinets* on subarrangements of \mathcal{A} . Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.

M is an abelian duality space of	The jump loci of ${\mathcal A}$ propagate:
dimension $r = \operatorname{rank}(\mathcal{A})$:	The jump loci of \mathcal{A} propagate: $\mathcal{R}_{1}^{1}(\mathcal{M}) \subseteq \cdots \subseteq \mathcal{R}_{1}^{r}(\mathcal{M})$
$H^*(X, \mathbb{Z}G_{ab})$ concentrated in deg r	$\mathcal{V}_1^1(M) \subseteq \cdots \subseteq \mathcal{V}_1^r(M)$

13/26

COHOMOLOGY JUMP LOCI OF RAAGS

The resonance varieties of T_L are unions of coordinate subspaces inside $H_V := H^1(T_L; \mathbb{C})$	$\mathcal{R}_{s}^{i}(T_{L}) = \bigcup_{\substack{W \subseteq V \\ \exists \sigma \in L_{V \setminus W}, \ \dim \widetilde{H}_{i-1- \sigma }(lk_{L_{W}}(\sigma), \mathbb{C}) \ge s}} H_{W}$
For a RAAG G _E :	$\mathcal{R}^1_1(\mathcal{G}_{\Gamma}) = \bigcup_{\substack{W \subseteq V \\ \Gamma_W \text{ disconnected}}} \mathcal{H}_W$
The characteristic varieties of T_L and G_{Γ} are unions of coordinate subtori $\mathbb{T}_W \subset T_V$, on same indexing sets	
<i>T_L</i> is an abelian duality space ⇐⇒ <i>L</i> is Cohen–Macaulay	$L \text{ CM} \implies$ resonance varieties of L propagate Question: Is the converse true?

Almost direct products

THEOREM (Falk-Randell 1985/88)

Let $G = K \rtimes_{\varphi} Q$. If Q acts trivially on K_{ab} , then

• $\operatorname{gr}(G) = \operatorname{gr}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)$, where $\tilde{\varphi} \colon \operatorname{gr}(Q) \to \operatorname{Der}(\operatorname{gr}(K))$.

• If K and Q are residually nilpotent, then G is residually nilpotent.

THEOREM

Let $G = K \rtimes_{\varphi} Q$. If Q acts trivially on $K_{abf} := K_{ab} / \text{Tors}$, then

- $\operatorname{gr}(G) \otimes \mathbb{Q} \cong (\operatorname{gr}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)) \otimes \mathbb{Q}.$
- If K and Q are RTFN, then G is RTFN.

If K_{abf} is f.g., Q is torsion-free abelian, and Q acts trivially on $H_1(K; \mathbb{Q})$, then

- $\operatorname{gr}_{\geq 2}(K) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}_{\geq 2}(G) \otimes \mathbb{Q}$, and so $\phi_k(K) = \phi_k(G)$ for $k \geq 2$.
- $\operatorname{gr}_{\geq 2}(K/K'') \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}_{\geq 2}(G/G'') \otimes \mathbb{Q}$, and so $\theta_k(K) = \theta_k(G)$ for $k \geq 2$.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an exact sequence of f.g. groups.

- If Q is abelian and acts trivially on K_{ab}, then ι*: T_G → T_K restricts to maps ι*: V¹_s(G) → V¹_s(K) for all s ≥ 1; furthermore, ι*: V¹₁(G) → V¹₁(K) is a surjection.
- If Q is torsion-free abelian and acts trivially on $H_1(K; \mathbb{Q})$, then $\iota^* : \mathbb{T}^0_G \twoheadrightarrow \mathbb{T}^0_K$ restricts to maps $\iota^* : \mathcal{W}^1_s(G) \to \mathcal{W}^1_s(K)$ for all $s \ge 1$; furthermore, $\iota^* : \mathcal{W}^1_1(G) \to \mathcal{W}^1_1(K)$ is a surjection.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an exact sequence of f.g. groups. Suppose G and K are 1-formal, Q is torsion-free abelian, and Q acts trivially on $H_1(K; \mathbb{Q})$. Then $\iota^* \colon H^1(G; \mathbb{C}) \twoheadrightarrow H^1(K; \mathbb{C})$ restricts to maps $\iota^* \colon \mathcal{R}^1_s(G) \to \mathcal{R}^1_s(K)$ for all $s \ge 1$; furthermore, $\iota^* \colon \mathcal{R}^1_1(G) \to \mathcal{R}^1_1(K)$ is surjective.

BESTVINA-BRADY GROUPS

THEOREM (PAPADIMA-S. 2007/2009, S. 2021)

Suppose $\Gamma = (V, E)$ is connected. Then

- In the split exact sequence $1 \to N_{\Gamma} \xrightarrow{\iota} G_{\Gamma} \xrightarrow{\pi} \mathbb{Z} \to 1$, the group \mathbb{Z} acts trivially on $(N_{\Gamma})_{ab}$.
- $\operatorname{gr}_{\geqslant 2}(N_{\Gamma}) \cong \operatorname{gr}_{\geqslant 2}(G_{\Gamma}).$ and $\operatorname{gr}_{\geqslant 2}(N_{\Gamma}/N_{\Gamma}'') \cong \operatorname{gr}_{\geqslant 2}(G_{\Gamma}/G_{\Gamma}'').$
- $\phi_k(N_{\Gamma}) = \phi_k(G_{\Gamma})$ and $\theta_k(N_{\Gamma}) = \theta_k(G_{\Gamma})$ for all $k \ge 2$.
- If $\kappa(\Gamma) = 1$, then $\mathcal{V}_1^1(N_{\Gamma}) = \operatorname{Hom}(N_{\Gamma}, \mathbb{C}^*)$ and $\mathcal{R}_1^1(N_{\Gamma}) = H^1(N_{\Gamma}; \mathbb{C})$.
- If $\kappa(\Gamma) > 1$, then the irreducible components of $\mathcal{V}_1^1(N_{\Gamma})$, respectively $\mathcal{R}_1^1(N_{\Gamma})$, are the subtori $\mathbb{T}'_W = \iota^*(\mathbb{T}_W)$, respectively the subspaces $H'_W = \iota^*(H_W)$, of dimension |W|, one for each subset $W \subset V$, maximal among those for which the induced subgraph Γ_W is disconnected.

MILNOR FIBRATIONS WITH TRIVIAL ALGEBRAIC MONODROMY

THEOREM

Let $(\mathcal{A}, \mathbf{m})$ be a multi-arrangement, and let $F_{\mathbf{m}}$ be its Milnor fiber. Suppose $h_* \colon H_1(F_{\mathbf{m}}; \mathbb{Z}) \to H_1(F_{\mathbf{m}}; \mathbb{Z})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F_m)) \cong \operatorname{gr}_{\geq 2}(\pi_1(M)).$
- $\operatorname{gr}_{\geq 2}(\pi_1(F_m)/\pi_1(F_m)'') \cong \operatorname{gr}_{\geq 2}(\pi_1(M)/\pi_1(M)'').$

THEOREM

Suppose $h_*: H_1(F_m; \mathbb{Q}) \to H_1(F_m; \mathbb{Q})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F_m)) \otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(\pi_1(M)) \otimes \mathbb{Q}.$
- $\bullet \ \operatorname{gr}_{\geqslant 2}(\pi_1(F_{\mathsf{m}})/\pi_1(F_{\mathsf{m}}''))\otimes \mathbb{Q}\cong \operatorname{gr}_{\geqslant 2}(\pi_1(M)/\pi_1(M)'')\otimes \mathbb{Q}.$

Hence, $\phi_k(\pi_1(F_m)) = \phi_k(\pi_1(M))$ and $\theta_k(\pi_1(F_m)) = \theta_k(\pi_1(M))$, $\forall k \ge 2$.

THEOREM

Let $\sigma_m \colon F_m \to U = \mathbb{P}(M)$ be the restriction of $M \to \mathbb{P}(M)$. Suppose the monodromy $h \colon F_m \to F_m$ induces the identity on $H_1(F_m; \mathbb{Q})$. Then,

- The induced homomorphism σ^{*}_m: H¹(U; C) → H¹(F_m; C) is an isomorphism that identifies R¹_s(U) with R¹_s(F_m), for all s ≥ 1.
- The induced homomorphism σ_m^{*}: H¹(U; C^{*}) → H¹(F_m; C^{*})⁰ is a surjection with kernel isomorphic to Z_N. Moreover,
 - For each $s \ge 1$, the map σ_m^* establishes a bijection between the sets of irreducible components of $\mathcal{V}_s^1(U)$ and $\mathcal{W}_s^1(F_m)$ that pass through the identity.
 - The map $\sigma_{\mathsf{m}}^* \colon \mathcal{V}_1^1(U) \to \mathcal{W}_1^1(\mathcal{F}_{\mathsf{m}})$ is a surjection.

ALEXANDER INVARIANTS OF ARRANGEMENTS

- Alexander invariant: B(A) := B(G(A)) = G'/G", viewed as a module over R = Z[G_{ab}] = Z[H₁(M; Z)].
- [Cohen–S. 1999] The homomorphisms j^X_↓: G(A) → G(A_X) induce a surjective *R*-morphism, Π: B(A) → B(A)^{loc} := ⊕_{X∈L2(A)} B(A_X).
- Infinitesimal Alexander invariant: $\mathfrak{B}(\mathcal{A}) := \mathfrak{B}(\mathcal{G}(\mathcal{A})) = \mathfrak{h}'(\mathcal{A})/\mathfrak{h}''(\mathcal{A})$, viewed as a module over $S = \text{Sym}[\mathcal{G}_{ab}] \cong \text{gr}(R)$.
- There is an epimorphism of graded S-modules, $\overline{\Pi} \colon \mathfrak{B}(\mathcal{A}) \to \mathfrak{B}(\mathcal{A})^{\mathsf{loc}}$.
- Hence, the Chen ranks of $\mathcal A$ admit the lower bound

$$\theta_k(\mathcal{G}(\mathcal{A})) \ge (k-1) \sum_{X \in L_2(\mathcal{A})} \binom{\mu(X) + k - 2}{k}$$

valid for all $k \ge 2$, with equality for k = 2.

DECOMPOSABLE ARRANGEMENTS

- For each flat $X \in L(\mathcal{A})$, let $\mathcal{A}_X := \{H \in \mathcal{A} \mid H \supset X\}$.
- The inclusions $\mathcal{A}_X \subset \mathcal{A}$ give rise to maps $M(\mathcal{A}) \hookrightarrow M(\mathcal{A}_X)$; get map

 $j: M(\mathcal{A}) \longrightarrow \prod_{X \in L_2(\mathcal{A})} M(\mathcal{A}_X).$

• The induced homomorphism on π_1 yields a morphism

$$\mathfrak{h}(j_{\sharp}) \colon \mathfrak{h}(G) \longrightarrow \prod_{X \in L_2(\mathcal{A})} \mathfrak{h}(G_X) =: \mathfrak{h}(G)^{\mathsf{loc}}.$$

THEOREM (PAPADIMA-S. 2006)

The map $\mathfrak{h}_k(j_{\sharp})$ is a surjection for each $k \ge 3$ and an iso for k = 2.

DEFINITION

 \mathcal{A} is *decomposable* if the map $\mathfrak{h}_3(j_{\sharp})$ is an isomorphism; that is, $\mathfrak{h}_3(G)$ is free abelian of rank as small as possible, namely, $\sum_{X \in L_2(\mathcal{A}_X)} {\mu(X) \choose 2}$.

- A similar definition works over \mathbb{Q} (or any field \mathbb{k}).
- Question: are decomposability and Q-decomposability equivalent?
- If \mathcal{A} is decomposable, and $\mathcal{B} \subset \mathcal{A}$, then \mathcal{B} is decomposable.
- Let $\mathcal{A}(\Gamma) = \{z_i z_j = 0 : (i, j) \in \mathsf{E}(\Gamma)\}$ be a graphic arrangement. Then $\mathcal{A}(\Gamma)$ is decomposable if and only if Γ contains no K_4 subgraph.

THEOREM (PAPADIMA-S. 2006)

Let \mathcal{A} be a decomposable arrangement, with group $G = G(\mathcal{A})$. Then:

- $\mathfrak{h}'(j_{\sharp}): \mathfrak{h}'(G) \to \mathfrak{h}'(G)^{\text{loc}}$ is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ is an isomorphism.
- For each $k \ge 2$, the group $\operatorname{gr}_k(G)$ is free abelian of rank

$$\phi_k(G) = \sum_{X \in L_2(\mathcal{A})} \phi_k(F_{\mu(X)}).$$

THEOREM (PAPADIMA-S. 2006)

Let \mathcal{A} be a decomposable arrangement, with group $G = G(\mathcal{A})$. Then:

- $\operatorname{gr}(G/G'') = \mathfrak{h}(G)/\mathfrak{h}''(G)$, as graded Lie algebras over \mathbb{Z} .
- gr(G/G'') is torsion-free, as a graded abelian group.
- The Chen ranks of G, for $k \ge 2$, are given by

$$\theta_k(G) = \sum_{X \in L_2(\mathcal{A})} \theta_k(F_{\mu(X)}).$$

THEOREM (PORTER-S. 2020)

Let \mathcal{A} and \mathcal{B} be decomposable arrangements with $L_{\leq 2}(\mathcal{A}) \cong L_{\leq 2}(\mathcal{B})$. Then, for each $k \ge 2$,

 $G(\mathcal{A})/\gamma_k(G(\mathcal{A})) \cong G(\mathcal{B})/\gamma_k(G(\mathcal{B})).$

- The Alexander invariant of \mathcal{A} decomposes if the map $\Pi: B(\mathcal{A}) \to B(\mathcal{A})^{\text{loc}}$ is an isomorphism. (Similarly over \mathbb{Q} .)
- The infinitesimal Alexander invariant of \mathcal{A} decomposes if the map $\overline{\Pi} \colon \mathfrak{B}(\mathcal{A}) \to \mathfrak{B}(\mathcal{A})^{\mathsf{loc}}$ is an isomorphism. (Similarly over \mathbb{Q} .)
- The *R*-module $B = B(\mathcal{A})$ is separated if $\bigcap_{k \ge 1} I^k B = \{0\}$, or, equivalently, the map $B \to \widehat{B}$ is injective.
- If $G(\mathcal{A})$ is residually nilpotent, then $B(\mathcal{A})$ is separated.

THEOREM

- If \mathcal{A} is decomposable, then $\mathfrak{B}(\mathcal{A})$ is decomposable.
- If \mathcal{A} is \mathbb{Q} -decomposable, then $\mathfrak{B}(\mathcal{A})$ and $\widetilde{B}(\mathcal{A})$ are \mathbb{Q} -decomposable.
- If A is \mathbb{Q} -decomposable and $B(A) \otimes \mathbb{Q}$ is separated, then B(A) is \mathbb{Q} -decomposable.

COROLLARY

If \mathcal{A} is \mathbb{Q} -decomposable and $B(\mathcal{A}) \otimes \mathbb{Q}$ is separated, then the monodromy action on $H_1(F(\mathcal{A}); \mathbb{Q})$ is trivial.

FALK'S PAIR OF ARRANGEMENTS

- Both A and have 2 triple points and 9 double points, yet L(A) ≇ L(Â). Nevertheless, M(A) ≃ M(Â).
- Both arrangements are decomposable, and their Milnor fibrations have trivial Z-monodromy.
- Nevertheless, $K = \pi_1(F)$ is *not* isomorphic to $\hat{K} = \pi_1(\hat{F})$. In fact:
 - $K/K'' \ncong \hat{K}/\hat{K}''$, since $\mathcal{V}_2^1(K) \cong \mathbb{Z}_3$, yet $\mathcal{V}_2^1(\hat{K}) = \{1\}$.
 - $K/\gamma_3(K) \not\cong \hat{K}/\gamma_3(\hat{K})$, since $H_2(K/\gamma_3(K);\mathbb{Z}) = \mathbb{Z}_3$, yet $H_2(\hat{K}/\gamma_3(\hat{K});\mathbb{Z}) = 0$.

References

- A.I. Suciu, Alexander invariants and cohomology jump loci in group extensions, to appear in Ann. Sc. Norm. Super. Pisa (2024), <u>doi</u>, <u>arxiv:2107.05148</u>,
- A.I. Suciu, *Lower central series and split extensions*, preprint (2022), <u>arxiv:2105.14129</u>.
- A.I. Suciu, *Milnor fibrations of arrangements with trivial algebraic monodromy*, preprint (2024), <u>arxiv:2402.03619</u>
- A.I. Suciu, On the topology and combinatorics of decomposable arrangements, preprint (2024).