Prof. Alexandru Suciu

MATH 3175
Group Theory
Spring 2024

Solutions to the Midterm Exam

1. Let G be an abelian group with identity e, and let H be the set of all elements $a \in G$ that satisfy the equation $a^{2}=e$. Prove that H is a subgroup of G.

- Let $a, b \in H$, so that $a^{2}=e$ and $b^{2}=e$. Then

$$
(a b)^{2}=a b a b=a(b a) b=a(a b) b=(a a)(b b)=e e=e,
$$

where we used the fact that multiplication in G is both associative and commutative. Thus, $a b \in H$.

- Let $a \in H$. Then $a \cdot a=a^{2}=e$; thus, $a^{-1}=a$, and so $a^{-1} \in H$.

This shows that H is a subgroup of G.
Remark: The assumption that G is an abelian group is essential for this to be true. For example, if $G=S_{3}$, then $H=\{(),(12),(13),(23)\}$, and this subset of G is not a subgroup, since, for instance, $|H|=4$ does not divide $|G|=6$.
2. Let $G=\langle a\rangle$ be a group generated by an element a of order 20 .
(i) Find all elements of G which generate G.

The cyclic group G consists of all elements of the form a^{k}, with $0 \leq k \leq 19$. The generators of G are those elements of the form a^{k}, with $0 \leq k \leq 19$ and $\operatorname{gcd}(k, 20)=1$. Thus, the set of generators of G is $\left\{a, a^{3}, a^{7}, a^{9}, a^{11}, a^{13}, a^{17}, a^{19}\right\}$, or, more succintly, $\left\{a^{ \pm 1}, a^{ \pm 3}, a^{ \pm 7}, a^{ \pm 9}\right\}$.
(ii) List all the elements in the subgroup $\left\langle a^{5}\right\rangle$, together with their respective orders.

The cyclic subgroup $\left\langle a^{5}\right\rangle$ consists of the elements e, a^{5}, a^{10}, a^{15}; their respective orders are $1,4,2,4$.
(iii) What are the generators of the subgroup $\left\langle a^{5}\right\rangle$? a^{5} and a^{15}.
(iv) Find an element in G that has order 4. Does this element generate G ?
a^{5} has order 4 ; it is not a generator of G.
3. Let $G=\mathrm{GL}(2,2)$ be the group of all invertible 2×2 matrices with entries in \mathbb{Z}_{2}, with group operation given my matrix multiplication.
(i) List all the elements of G and find their orders.

The invertible 2×2 matrices with entries in $\mathbb{Z}_{2}=\{0,1\}$ are those which have non-zero determinant; in this case, those matrices with determinant equal to 1 :

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

The orders of these matrices are: $1,2,2,2,3,3$.
(ii) Does G contain a subgroup of order 3? Why, or why not?

Yes, the cyclic subgroup of order 3 generated by any of the two matrices of order 3:

$$
H=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\}
$$

(iii) Is G an abelian group? Why, or why not?

No, G is not an abelian group, since it contains pairs of elements that do not commute (that is, $a, b \in G$ such that $a b \neq b a$). For instance:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \quad \text { but } \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

4. Let $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ be the multiplicative group of positive real numbers. Consider the map $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$given by $f(x)=\sqrt{x}$.
(i) Show that f is an homomorphism.

For all $x_{1}, x_{2} \in \mathbb{R}^{+}$, we have: $f\left(x_{1} x_{2}\right)=\sqrt{x_{1} x_{2}}=\sqrt{x_{1}} \sqrt{x_{2}}=f\left(x_{1}\right) f\left(x_{2}\right)$.
(ii) What is the kernel of f ?
$\operatorname{ker}(f)=\left\{x \in \mathbb{R}^{+}: f(x)=1\right\}=\{x \in \mathbb{R}: x>0$ and $\sqrt{x}=1\}=\{1\}$.
(iii) What is the image of f ? For each $y \in \operatorname{im}(f)$ find an $x \in \mathbb{R}^{+}$such that $f(x)=y$. $\operatorname{im}(f)=\left\{y \in \mathbb{R}^{+}: \exists x \in \mathbb{R}^{+}\right.$such that $\left.\sqrt{x}=y\right\}=\mathbb{R}^{+}$. Indeed, if $y \in \mathbb{R}^{+}$, take $x=y^{2} \in \mathbb{R}^{+} ;$then $f(x)=f\left(y^{2}\right)=\sqrt{y^{2}}=y$.
(iv) Show that f is an isomorphism, and find the inverse isomorphism.

The map f is injective: if $x_{1}, x_{2} \in \mathbb{R}^{+}$are such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $f\left(x_{1} x_{2}^{-1}\right)=f\left(x_{1}\right) f\left(x_{2}\right)^{-1}=1$, and so, by part (1), $x_{1} x_{2}^{-1}=1$, i.e., $x_{1}=x_{2}$.
The map f is also surjective, by part (2). Thus, f is a bijection. Moreover, by part (1), f is a homomorphism. Therefore, f is an isomorphism.
The inverse of f is the isomorphism $f^{-1}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$given by $f^{-1}(y)=y^{2}$.
5. List all the homomorphisms from the cyclic group of order 4 to itself. For each such homomorphism, $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}$, indicate what the image of f and the kernel of f are (that is, list the elements of $\operatorname{im}(f)$ and $\operatorname{ker}(f))$.

Since the domain of f is a cyclic group (the group $\mathbb{Z}_{4}=\langle 1\rangle$), the homomorphism f is determined by the value $f(1)$ it assigns to the chosen generator of \mathbb{Z}_{4}. There are 4 such values (as many elements in the codomain, \mathbb{Z}_{4}). Therefore, there are 4 possibilities:

- $f(1)=0$ and thus $f(x)=0$ for all $x \in \mathbb{Z}_{4}$ (the trivial homomorphism). The kernel is \mathbb{Z}_{4}, the image is $\{0\}$.
- $f(1)=1$ and thus $f(x)=x$ for all $x \in \mathbb{Z}_{4}$ (the identity homomorphism). The kernel is $\{0\}$, the image is \mathbb{Z}_{4}.
- $f(1)=2$ and thus $f(x)=2 x$ for all $x \in \mathbb{Z}_{4}$. The kernel is $\{0,2\}$, the image is $\{0,2\}$.
- $f(1)=3$ and thus $f(x)=3 x$ for all $x \in \mathbb{Z}_{4}$. The kernel is $\{0\}$, the image is \mathbb{Z}_{4}.

6. Let \mathbb{Z}_{n}^{\times}be the group of units in the ring \mathbb{Z}_{n}, let Q_{8} be the quaternion group of order 8 , let D_{n} be the dihedral group of order $2 n$, and let S_{n} be the group of permutations of $\{1, \ldots, n\}$. Show that the following pairs of groups are not isomorphic. In each case, explain why.
(i) \mathbb{Z}_{15}^{\times}and \mathbb{Z}_{8}.

Both groups are abelian of size 8 , but $\mathbb{Z}_{15}^{\times}=\{1,2,4,7,8,11,13,14\}$ is not cyclic (its elements have orders $1,4,2,4,4,2,4,2$, respectively, so no element of order 8), whereas \mathbb{Z}_{8} is cyclic. Therefore, the two groups are not isomorphic.
(ii) Q_{8} and D_{4}.

Both groups are non-abelian of size 8 and all their elements have order 1,2 or 4 , but Q_{8} has 6 elements of order 4 , whereas D_{4} has only 2 elements of order 4 . Since isomorphisms must preserve the orders of elements, the two groups are not isomorphic.
(iii) $Q_{8} \times \mathbb{Z}_{3}$ and $S_{3} \times \mathbb{Z}_{4}$.

Both groups are non-abelian of size 24 , and all their elements have order $1,2,3,4$, or 12 , but again not the same number of each type; e.g., $Q_{8} \times \mathbb{Z}_{3}$ had 6 elements of order 12 (namely, $(\pm i, \pm 1),(\pm j, \pm 1),(\pm k, \pm 1)$), whereas $S_{3} \times \mathbb{Z}_{4}$ has only 4 elements of order 12 (namely, $((1,2,3), \pm 1)$ and $((1,3,2), \pm 1))$. Therefore, the two groups are not isomorphic.
7. Let G be a finite group, H a subgroup of G, and K a subgroup of H.
(i) Show that $[G: K]=[G: H] \cdot[H: K]$.

By Lagrange's Theorem the index of the subgroup $H \leq G$ is given by $[G: H]=$ $|G| /|H|$. Hence,

$$
[G: K]=\frac{|G|}{|K|}=\frac{|G|}{|H|} \cdot \frac{|H|}{|K|}=[G: H] \cdot[H: K] .
$$

(ii) Suppose $|K|=10$ and $|G|=240$. What are the possible values for $|H|$?

By Lagrange's Theorem, the order of H is divisible by $|K|=10=2 \cdot 5$ and divides $|G|=240=2^{4} \cdot 3 \cdot 5$. Hence,

$$
|H| \in\{10,20,30,40,60,80,120,240\}
$$

8. Let $D_{3}=\left\langle a, b \mid a^{3}=b^{2}=1, b a=a^{-1} b\right\rangle$ be the dihedral group of order 6 .
(i) Let $H=\langle a\rangle$ be the cyclic subgroup generated by a. Write down all the right cosets and all the left cosets of H in D_{3}. Is H a normal subgroup?
Right cosets of H in G :

$$
\begin{aligned}
H & =\left\{1, a, a^{2}\right\} \\
H b & =\left\{b, a b, a^{2} b\right\}
\end{aligned}
$$

Left cosets of H in G :

$$
\begin{aligned}
H & =\left\{1, a, a^{2}, a^{3}\right\} \\
b H & =\left\{b, b a, b a^{2}\right\}
\end{aligned}
$$

Yes, H is a normal subgroup of G. Indeed, since $b a=a^{2} b$ and $b a^{2}=a b$, we have that $b H=H b$, and of course $H=H$, thus showing that the left and right cosets of H coincide. Alternatively, one may note that $b H=H b=G \backslash H$, an argument which shows that any index 2 subgroup of an arbitrary group G is normal.
(ii) Let $K=\langle b\rangle$ be the cyclic subgroup generated by b. Write down all the right cosets and all the left cosets of K in D_{3}. Is K a normal subgroup?
Right cosets of K in G :

$$
\begin{aligned}
K & =\{1, b\} \\
K a & =\{a, b a\} \\
K a^{2} & =\left\{a^{2}, b a^{2}\right\}
\end{aligned}
$$

Left cosets of K in G :

$$
\begin{aligned}
K & =\{1, b\} \\
a K & =\{a, a b\} \\
a^{2} K & =\left\{a^{2}, a^{2} b\right\}
\end{aligned}
$$

No, K is not a normal subgroup of G. Indeed, $K a \neq a K$, since $b a \neq a b$. Alternatively, $a b a^{-1}=a^{2} b \notin K$, although $b \in K$.

