Name:

Prof. Alexandru Suciu

MATH 3175
Group Theory
Spring 2024

Midterm Exam

1. Let G be an abelian group with identity e, and let H be the set of all elements $a \in G$ that satisfy the equation $a^{2}=e$. Prove that H is a subgroup of G.
2. Let $G=\langle a\rangle$ be a group generated by an element a of order 20 .
(i) Find all elements of G which generate G.
(ii) List all the elements in the subgroup $\left\langle a^{5}\right\rangle$, together with their respective orders.
(iii) What are the generators of the subgroup $\left\langle a^{5}\right\rangle$?
(iv) Find an element in G that has order 4. Does this element generate G ?
3. Let $G=\mathrm{GL}(2,2)$ be the group of all invertible 2×2 matrices with entries in \mathbb{Z}_{2}, with group operation given my matrix multiplication.
(i) List all the elements of G and find their orders.
(ii) Does G contain a subgroup of order 3? Why, or why not?
(iii) Is G an abelian group? Why, or why not?
4. Let $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ be the multiplicative group of positive real numbers. Consider the map $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$given by $f(x)=\sqrt{x}$.
(i) Show that f is an homomorphism.
(ii) What is the kernel of f ?
(iii) What is the image of f ? For each $y \in \operatorname{im}(f)$ find an $x \in \mathbb{R}^{+}$such that $f(x)=y$.
(iv) Show that f is an isomorphism, and find the inverse isomorphism.
5. List all the homomorphisms from the cyclic group of order 4 to itself. For each such homomorphism, $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}$, indicate what the image of f and the kernel of f are (that is, list the elements of $\operatorname{im}(f)$ and $\operatorname{ker}(f)$).
6. Let \mathbb{Z}_{n}^{\times}be the group of units in the ring \mathbb{Z}_{n}, let Q_{8} be the quaternion group of order 8 , let D_{n} be the dihedral group of order $2 n$, and let S_{n} be the group of permutations of $\{1, \ldots, n\}$. Show that the following pairs of groups are not isomorphic. In each case, explain why.
(i) \mathbb{Z}_{15}^{\times}and \mathbb{Z}_{8}.
(ii) Q_{8} and D_{4}.
(iii) $Q_{8} \times \mathbb{Z}_{3}$ and $S_{3} \times \mathbb{Z}_{4}$.
7. Let G be a finite group, H a subgroup of G, and K a subgroup of H.
(i) Show that $[G: K]=[G: H] \cdot[H: K]$.
(ii) Suppose $|K|=10$ and $|G|=240$. What are the possible values for $|H|$?
8. Let $D_{3}=\left\langle a, b \mid a^{3}=b^{2}=1, b a=a^{-1} b\right\rangle$ be the dihedral group of order 6 .
(i) Let $H=\langle a\rangle$ be the cyclic subgroup generated by a. Write down all the right cosets and all the left cosets of H in D_{3}. Is H a normal subgroup?
(ii) Let $K=\langle b\rangle$ be the cyclic subgroup generated by b. Write down all the right cosets and all the left cosets of K in D_{3}. Is K a normal subgroup?
