Name:

	Prof. Alexandru Suciu	
MATH 3175	Group Theory	Spring 2024
	Midterm Exam	

1. Let G be an abelian group with identity e, and let H be the set of all elements $a \in G$ that satisfy the equation $a^2 = e$. Prove that H is a subgroup of G.

- **2.** Let $G = \langle a \rangle$ be a group generated by an element *a* of order 20.
 - (i) Find all elements of G which generate G.

(ii) List all the elements in the subgroup $\langle a^5 \rangle$, together with their respective orders.

(iii) What are the generators of the subgroup $\langle a^5 \rangle$?

(iv) Find an element in G that has order 4. Does this element generate G?

- **3.** Let G = GL(2,2) be the group of all invertible 2×2 matrices with entries in \mathbb{Z}_2 , with group operation given my matrix multiplication.
 - (i) List all the elements of G and find their orders.

(ii) Does G contain a subgroup of order 3? Why, or why not?

(iii) Is G an abelian group? Why, or why not?

- 4. Let $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ be the multiplicative group of positive real numbers. Consider the map $f : \mathbb{R}^+ \to \mathbb{R}^+$ given by $f(x) = \sqrt{x}$.
 - (i) Show that f is an homomorphism.

(ii) What is the kernel of f?

(iii) What is the image of f? For each $y \in im(f)$ find an $x \in \mathbb{R}^+$ such that f(x) = y.

(iv) Show that f is an isomorphism, and find the inverse isomorphism.

5. List all the homomorphisms from the cyclic group of order 4 to itself. For each such homomorphism, $f: \mathbb{Z}_4 \to \mathbb{Z}_4$, indicate what the image of f and the kernel of f are (that is, list the elements of $\operatorname{im}(f)$ and $\operatorname{ker}(f)$).

6. Let \mathbb{Z}_n^{\times} be the group of units in the ring \mathbb{Z}_n , let Q_8 be the quaternion group of order 8, let D_n be the dihedral group of order 2n, and let S_n be the group of permutations of $\{1, \ldots, n\}$. Show that the following pairs of groups are *not* isomorphic. In each case, explain why.

(i) \mathbb{Z}_{15}^{\times} and \mathbb{Z}_8 .

(ii) Q_8 and D_4 .

(iii) $Q_8 \times \mathbb{Z}_3$ and $S_3 \times \mathbb{Z}_4$.

7. Let G be a finite group, H a subgroup of G, and K a subgroup of H.
(i) Show that [G: K] = [G: H] · [H : K].

(ii) Suppose |K| = 10 and |G| = 240. What are the possible values for |H|?

- 8. Let $D_3 = \langle a, b \mid a^3 = b^2 = 1, ba = a^{-1}b \rangle$ be the dihedral group of order 6.
 - (i) Let $H = \langle a \rangle$ be the cyclic subgroup generated by a. Write down all the right cosets and all the left cosets of H in D_3 . Is H a normal subgroup?

(ii) Let $K = \langle b \rangle$ be the cyclic subgroup generated by b. Write down all the right cosets and all the left cosets of K in D_3 . Is K a normal subgroup?