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Solutions to Homework 5

1. Let G1 and G2 be two groups, with identities e1 and e2, respectively. Let G = G1 ×G2 and
let H = {(g1, g2) ∈ G1 ×G2 : g2 = e2}. Show that

(i) H is a normal subgroup of G.

First proof. First we check H is a subgroup. Let (g1, e2) and (h1, e2) be two arbitrary
elements in H. Then, since G1 is a group, we have

(g1, e2) · (h1, e2)−1 = (g1, e2) · (h−1
1 , e2) = (g1h

−1
1 , e2) ∈ H,

and this shows H ≤ G. Next, we show that H is a normal subgroup. Let (g1, g2) and
(h1, e2) be arbitrary elements in G and H, respectively. Then

(g1, g2) · (h1, e2) · (g1, g2)−1 = (g1, g2) · (h1, e2) · (g−1
1 , g−1

2 )

= (g1h1g
−1
1 , g2e2g

−1
2 )

= (g1h1g
−1
1 , e2) ∈ H,

and this shows H ◁ G.

Second proof. As shown in part (iii), we have H = ker(φ), where φ : G → G2, is the
homomorphism given by φ(g1, g2) = g2. Therefore, H ◁ G.

(ii) H ∼= G1.

Define a map f : H → G1 by setting f(g1, e2) = g1 for all g1 ∈ G1. This is a homomor-
phism, since f((g1, e2) · (h1, e2)) = f(g1h1, e2) = g1h1 = f(g1, e2) · f(h1, e2), and also a
bijection, with inverse f−1 : G1 → H, f−1(g1) = (g1, e2). Hence, f is an isomorphism,
and so H ∼= G1.

(iii) G/H ∼= G2.

Define a map φ : G → G2 by setting φ(g1, g2) = g2. Then φ is a homomorphism, since
φ((g1, g2) · (h1, h2)) = φ(g1h1, g2h2) = g2h2 = φ(g1, g2) · φ(h1, h2).
Clearly, im(φ) = G2, and

ker(φ) = {(g1, g2) ∈ G : φ(g1, g2) = e2} = {(g1, g2) ∈ G : g2 = e2} = H

Thus, by the First Isomorphism Theorem, G/ ker(φ) ∼= im(φ), and so, G/H ∼= G2.

2. Let H be a subgroup of G, and define its normalizer as N(H) := {g ∈ G : gHg−1 = H}.
(i) Show that N(H) is a subgroup of G.

Let g1, g2 ∈ N(H), so that g1Hg
−1
1 = H and g2Hg

−1
2 = H. Then

(g1g2)H(g1g2)
−1 = g1(g2Hg

−1
2 )g−1

1 = g1Hg
−1
1 = H =⇒ g1g2 ∈ N(H)

g−1
1 (g1Hg

−1
1 )g1 = g−1

1 Hg1 =⇒ H = g−1
1 Hg1 =⇒ g−1

1 ∈ N(H)

Thus, N(H) ≤ G



MATH 3175 Solutions to Homework 5 Spring 2024

(ii) Show that the subgroups of G that are conjugate to H are in one-to-one correspondence
with the left cosets of N(H) in G.

Let S be the set of subgroups of G that are conjugate to H and let T be the set of left
cosets of N(H) in G; that is,

S = {gHg−1 : g ∈ G} and T = {gN(H) : g ∈ G}.

Define a map φ : S → T by setting φ(gHg−1) = gN(H). Clearly, this map is surjective.
We now check that it is also injective:

φ(g1Hg
−1
1 ) = φ(g2Hg

−1
2 ) =⇒ g1N(H) = g2N(H) =⇒ g−1

1 g2 ∈ N(H)

=⇒ g−1
1 g2H(g−1

1 g2)
−1 = H =⇒ g−1

1 g2Hg
−1
2 g−1

1 = H =⇒ g2Hg
−1
2 = g1Hg

−1
1

This shows that φ is a bijection, and the proof is complete.

Alternatively, we may define a map ψ : T → S by setting ψ(gN(H)) = gHg−1. Before
proceeding, we need to check this map is well defined, that is,

g1N(H) = g2N(H) =⇒ g2Hg
−1
2 = g1Hg

−1
1 ,

but this is done exactly as above. It is now clear that ψ = φ−1; thus, both φ and ψ are
bijections, and this completes the alternate proof.

3. Given a group G and an element a ∈ G, we define the centralizer of a to be the set C(a) of
elements x ∈ G that commute with a; that is, C(a) := {g ∈ G : ga = ag}.
(i) Show that C(a) is a subgroup of G.

Let g, h ∈ C(a), so that ga = ag and ha = ah. Then

(gh)a = g(ha) = g(ah) = (ga)h = (ag)h = a(gh) =⇒ gh ∈ C(a)

a = (g−1g)a = g−1(ga) = g−1(ag) = (g−1a)g =⇒ g−1a = ag−1 =⇒ g−1 ∈ C(a),

thus showing that C(a) ≤ G.

(ii) Show that ⟨a⟩ ⊆ C(a).

Recall that ⟨a⟩ = {ak : k ∈ Z}. Then ak · a = ak+1 = a · ak, and so ak ∈ C(a) for all
k ∈ Z, thus showing that ⟨a⟩ ⊆ C(a).

(iii) Show that Z(G) ⊆ C(a).

Recall that Z(G) = {g ∈ G : gx = xg for all x ∈ G}. In particular, if g ∈ Z(G), then
ga = ag, and so Z(G) ⊆ C(a).

4. Let G = Z4 ×Z6. Compute the factor groups G/⟨(2, 3)⟩ and G/⟨(3, 3)⟩. (In each case, write
the result in terms of known finite groups, and explain your answer.)

Part 1. Note that H = ⟨(2, 3)⟩ = {(0, 0), (2, 3)} is a group of order 2 (and thus isomorphic
to Z2). Since G is an abelian group of order 24, the factor group G/H is an abelian group

of order |G|
|H| =

24
2 = 12. Its elements are the cosets gH, where

g ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5)}.
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Note that G/H is generated by the element (1, 6)H of order 12; thus, G/H ∼= Z12, the cyclic
group of order 12.

Part 2. Note that K = ⟨(3, 3)⟩ = {(0, 0), (3, 3), (2, 0), (1, 3)} is a cyclic group of order
4 (and thus isomorphic to Z4). Thus, the factor group G/K is an abelian group of order
|G|
|K| =

24
4 = 6. Since there is only one abelian grooup of order 6, we must have G/K ∼= Z6.

Alternatively, the elements of G/K are the cosets gK, where g ∈ {(0, 0), (0, 1), (0, 2), (0, 3),
(0, 4), (0, 5)}, and clearly this is the cyclic group ⟨(0, 1)K⟩ of order 6, showing once again
that G/K ∼= Z6.

5. Let G be a group of order 35. Suppose G has precisely one subgroup of order 5 and one
subgroup of order 7. Show that G is a cyclic group.

Let a ∈ G be an element of order 5 and b ∈ G an element of order 7. Then G contains
the cyclic subgroups ⟨a⟩ = {e, a, a2, a3, a4} and ⟨b⟩ = {e, b, b2, b3, b4, b5, b6}; thus, G contains
the subset

S := ⟨a⟩ ∪ ⟨b⟩ = {e, a, a2, a3, a4, b, b2, b3, b4, b5, b6}
of size 11 = 5 + 7− 1. Since G has size 35 > 11, there must be an element g ∈ G such that
g /∈ S.

No, by Lagrange’s Theorem, the order of g divides the size of G, and so ord(g) ∈
{1, 5, 7, 35}. Clearly, ord(g) ̸= 1, since otherwise g = e ∈ S. Also, ord(g) ̸= 5, since
otherwise ⟨g⟩ would be a (cyclic) subgroup of G different from ⟨a⟩ (since g /∈ S), thus con-
tradicting our assumption that G has only one subgroup of order 5. The same reasoning
shows that ord(g) ̸= 7.

The only remaining possibility is that ord(g) = 35. Since ⟨g⟩ ⊆ G and |G| = 35, this
implies G = ⟨g⟩, and so G is a cyclic group of order 35 (that is, G ∼= Z35).


