Prof. Alexandru Suciu Group Theory

MATH 3175

Spring 2024

Homework 5

- **1.** Let G_1 and G_2 be two groups, with identities e_1 and e_2 , respectively. Let $G = G_1 \times G_2$ and let $H = \{(g_1, g_2) \in G_1 \times G_2 : g_2 = e_2\}$. Show that
 - (i) H is a normal subgroup of G.
 - (ii) $H \cong G_1$.
 - (iii) $G/H \cong G_2$.
- **2.** Let H be a subgroup of G, and define its normalizer as $N(H) \coloneqq \{g \in G : gHg^{-1} = H\}.$
 - (i) Show that N(H) is a subgroup of G.
 - (ii) Show that the subgroups of G that are conjugate to H are in one-to-one correspondence with the left cosets of N(H) in G.
- **3.** Given a group G and an element $a \in G$, we define the *centralizer of* a to be the set C(a) of elements $x \in G$ that commute with a; that is, $C(a) := \{g \in G : ga = ag\}$.
 - (i) Show that C(a) is a subgroup of G.
 - (ii) Show that $\langle a \rangle \subseteq C(a)$.
 - (iii) Show that $Z(G) \subseteq C(a)$.
- **4.** Let $G = \mathbb{Z}_4 \times \mathbb{Z}_6$. Compute the factor groups $G/\langle (2,3) \rangle$ and $G/\langle (3,3) \rangle$. (In each case, write the result in terms of known finite groups, and explain your answer.)
- 5. Let G be a group of order 35. Suppose G has precisely one subgroup of order 5 and one subgroup of order 7. Show that G is a cyclic groups.