
Final Exam
MATH 3175–Group Theory

Solutions

Problem 1. Let f : G→ H be a function between two groups, and let K := {(x, y) ∈ G×H |
f(x) = y} be its graph.

Suppose f is a homomorphism. Let x1, x2 ∈ G. Then f(x1x2) = f(x1)f(x2), since f is a
homomomorphism. Hence, since both G and H are groups, and by the definition of the group
structure in the direct product of two groups,

(x1, f(x1)) ∗ (x−12 , f(x2)
−1) = (x1, f(x1)) ∗ (x−12 , f(x−12 )) =

(x1x
−1
2 , f(x1)f(x−12 )) = (x1x

−1
2 , f(x1x

−1
2 )),

and this belongs to K. Therefore, K is a subgroup of G×H.

Conversely, suppose K is a subgroup of G ×H. Then, for all x1, x2 ∈ G we have (x1, f(x1)) ∗
(x2, f(x2)) = (x1x2, f(x1)f(x2)) ∈ K, and so f(x1x2) = f(x1)f(x2). Hence, f is a homomor-
phism.

Problem 2. (a) Show that every group of order 15 is isomorphic to Z15.

|G| = 15 = 3 · 5. By Sylow III, it follows that n3 = 1 and n5 = 1. Thus, the Sylow
p-subgroups of G are unique (and hence normal) and thus by an in-class proposition we get
that G is isomorphic to P1 × P2 where P1 is the 3-Sylow subgroup and P2 is the 5-Sylow
subgroup. Furthermore, the orders of P1 and P2 are prime, so they must both be cyclic, so
G ∼= P1 × P2

∼= C3 × C5
∼= C15 (by (1)). Thus, every group of order 15 is cyclic.

(b) Let G be a group of order 255. Show that G has a normal subgroup H of order 17.

|G| = 255 = 3 · 5 · 17. So, n17 ∈ {1, 18, ...} ∩ {1, 3, 5, 15} =⇒ n17 = 1. By the first
Sylow theorem, this unique 17-Sylow subgroup will have order 17 and by our corollary to
the second Sylow theorem this subgroup will be normal in G.

(c) Show that G/H is cyclic.

Consider |G/H| = [G : H] = |G|
|H| = 255

17 = 15 = 3 · 5. Then, by part a, we have that G/H is
cyclic.

(d) Show that G has a normal subgroup K of order either 3 or 5.

By Sylow III, n3 ∈ {1, 4, 7, 10, 13, 16, 19, . . . , 85, . . . } ∩ {1, 5, 17, 85} =⇒ n3 ∈ {1, 85}.
Similarly, n5 ∈ {1, 6, 11, 16, 21, 26, . . . , 51, . . . } ∩ {1, 3, 17, 51} =⇒ n5 ∈ {1, 51}. Suppose
that n5 = 51, n3 = 85. Then, we may use homework 5 problem 3.2 because the orders of
all these subgroups are prime. So, as in 3.3, we have that G must contain 51(5− 1) = 204
elements of order 5 and 85(3 − 1) = 170 elements of order 3. Their sum is more than the
size of the group, so we have a contradiction. Thus either n5 = 1 or n3 = 1. Thus, by
the first Sylow theorem and the corollary to the second Sylow theorem we have that there
exists a (3 or 5)-Sylow subgroup that is normal in G and has order 3 or 5, respectively.

(e) Show that, in either case, G/K is Abelian.
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We have two cases:

|G/K| = |G|
|K|

=
255

3 or 5
= 85 or 51.

In the first case, n5 ∈ {1, 6, 11, 16, . . . }∩{1, 17}, n17 ∈ {1, 18, . . . }∩{1, 5} =⇒ n5 = 1 and
n17 = 1. Notice that 85 = 5 · 17 and 51 = 17 · 3. Thus, G/K has unique Sylow p-subgroups,
and so we can apply an in-class proposition to obtain that G/K ∼= P1×P2

∼= C5×C17
∼= C85.

Since every cyclic group is Abelian, we have that G/K is Abelian. In the second case,
observe that n3 = 1, n17 = 1, and the same argument yields the desired result.

(f) BONUS: Show that G is Abelian.

We have that G/K and G/H are both Abelian groups. Then by Problem 8.3, G/(H ∩K)
is also Abelian. Recall that |H| = 17, which is coprime to both 3 and 5, so Lagrange’s
theorem demands that

|H ∩K| = 1 =⇒ G

H ∩K
∼= G,

which must then be Abelian.

Problem 3. Let A4 be the group of even permutations of the set {1, 2, 3, 4}. Consider the
subgroups H = 〈(123)〉 and K = 〈(12)(34), (13)(24)〉.

(a) The left cosets of H are:

• H = {(), (123), (132)},
• (12)(34)H = {(12)(34), (143), (243)},
• (13)(24)H = {(13)(24), (142), (234)},
• (14)(23)H = {(14)(23), (124), (134)}.

The right cosets of H are:

• H = {(), (123), (132)},
• H(12)(34) = {(12)(34), (134), (234)},
• H(13)(24) = {(13)(24), (124), (243)},
• H(14)(23) = {(14)(23), (142), (143)}.

(b) H is a cyclic group of order 3, and so H ∼= Z3. Its index in A4 is 12/3 = 4, which agrees
with the number of left and right cosets. The left and right cosets of H are not the same,
and so H is not a normal subgroup of A4.

(c) The left cosets of K are:

• K = {(), (12)(34), (13)(24), (14)(23)},
• (123)K = {(123), (134), (142), (243)},
• (132)K = {(124), (132), (143), (234)}.

The right cosets of K are:

• K = {(), (12)(34), (13)(24), (14)(23)},
• K(123) = {(123), (134), (142), (243)},
• K(132) = {(124), (132), (143), (234)}.

(d) K is a group of order 4, and in fact K ∼= Z2×Z2. Its index in A4 is 12/4 = 3, which agrees
with the number of left and right cosets. The left and right cosets of K coincide, and so K
is a normal subgroup of A4.
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(e) Since gcd(|H|, |K|) = 1, we have H ∩K = {()}, the trivial subgroup of A4, which of course
is a normal subgroup.

(f) The (internal) product HK has 3 · 4 = 12 elements, and so it coincides with A4, which of
course is a normal subgroup of itself.

(g) We have H × K = Z3 × (Z2 × Z2), which is an abelian group of order 12, isomorphic to
Z6 ⊕Z2. (Note: Although H ∩K = {e} and |HK| = |H ×K|, we still have HK 6∼= H ×K.
The reason is that the Decomposition Theorem does not apply here: H is not a normal
subgroup, and H and K do not commute.)

Problem 4. Let Q8 be quaternion group of order 8. Consider the left action of Q8 on itself,
and let ϕ : Q8 → Sym(Q8) = S8 be the corresponding homomorphism, given by ϕ(g)(x) = gx.
For every x ∈ Q8, the stabilizer subgroup is the trivial subgroup {e}. Thus, the kernel of
ϕ, which equals the intersection of all the stabilizer subgroups, is also equal to {e}. This
shows that ϕ is injective (that is, the action is faithful), and thus Q8 is isomorphic to ϕ(Q8),
a subgroup of S8. (By a small abuse of language, we simply say Q8 is a subgroup of S8.) An
explicit realization of Q8 as a subgroup of S8 is obtained by sending i 7→ (1, 2, 4, 6)(3, 8, 7, 5)
and j 7→ (1, 3, 4, 7)(2, 5, 6, 8), and thus k 7→ (1, 5, 4, 8)(2, 7, 6, 3).

We now consider the question whether Q8 is a subgroup of S5. We have that |S5| = 120 = 8·3·5,
and so, by Sylow I, S5 must have a 2-Sylow subgroup of order 8. The dihedral group D4 acts
faithfully on the 4 vertices of a square, and thus is a subgroup of S4, hence a subgroup of S5.
But |D4| = 8, and so D4 is a 2-Sylow subgroup of S5. On the other hand, Q8 6∼= D4 (for instance,
because Q8 has 6 elements of order 4, whereas D4 has only 2 such elements). Thus, Q8 cannot
be a 2-Sylow subgroup of S5 (since all such subgroups are conjugate by Sylow II, and hence
isomorphic). Therefore, Q8 cannot be a subgroup of S5 (since it is a 2-group of order 8, so it
would be a 2-Sylow subgroup of S5 if it were a subgroup of S5).

Here is an alternate proof, which shows that, in fact, Q8 is not a subgroup of S6 or S7, either,
thereby proving that the embedding of Q8 into S8 guaranteed by Cayley’s method from above is
best possible. So suppose there is an injective homomorphism Q8 → S7, i.e., a faithful action of
Q8 on the set {1, . . . , 7}. By the Orbit-Stabilizer theorem, the index of each stabilizer equals the
size of the corresponding orbit, and thus is at most 7; hence, none of the stabilizers is trivial. On
the other hand, the center Z(Q8) = {±1} is contained in any non-trivial subgroup of Q8. Hence,
the intersection of all the stabilizers contains Z(Q8), and so is non-trivial, thereby contradicting
the faithfulness of the action. This proves Q8 6≤ S7, and thus Q8 6≤ Sn for any n ≤ 7.

Problem 5. (a) Let G be a group of order 36 = 4 · 9, and let np =
∣∣Sylp(G)

∣∣ for p | |G|. We
then have n3 ≡ 1 (mod 3) and n3 | 4; thus, n3 = 1 or 4. Let’s consider each case in turn.

First suppose n3 = 1. Then there is a unique 3-Sylow subgroup of G, call it P , which must be
a normal subgroup by Sylow II. Moreover, |S| = 9 is neither 1 nor 36, and so P is a non-trivial,
proper, normal subgroup of G, thereby showing that G is not a simple group.

Now suppose n3 = 4. By Sylow II, the conjugation action of G on Syl3(G) is transitive; let
ϕ : G→ S4 be the corresponding homomorphism. Since |G| = 36 > 24 = |S4|, the map ϕ cannot
be injective. Thus, the normal subgroup K = ker(ϕ) is neither trivial (by non-injectivity of ϕ),
nor equal to G (by transitivity of the action). Therefore, G is not simple.

(b) Now let G be a group of order 56 = 8 ·7. We then have n7 ≡ 1 (mod 7) and n7 | 8, implying
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n7 = 1 or 8. Let’s consider each case in turn.

If n7 = 1, then G has a single 7-Sylow subgroup, which must be normal by Sylow II, and so G
is not simple.

If n7 = 8, then G has 8 7-Sylow subgroups, which must all be cyclic of order 7, implying that G
has 8 · (7− 1) = 48 elements of order 7 in all. This leaves 8 other elements in G (including the
identity), and by Sylow I, those 8 elements must comprise a 2-Sylow subgroup, which perforce
must be the only one of this sort, and thus a normal subgroup. Hence, once again, G is not
simple.

Problem 6. We need to classify up to isomorphism all the finite groups G which satisfy the
following two conditions: (1) G is a factor group of Z2 = Z × Z, and (2) The order of every
element of G divides 24. To start with, note the following:

(i) G is abelian (since it is a quotient of Z2 = Z⊕ Z, an abelian group).

(ii) G is generated by at most 2 elements (since it is a quotient of Z2, which can be generated
by 2 elements, say, (1, 0) and (0, 1)).

(iii) For every x ∈ G, we have 24x = 0 (since o(x) | 24).

(iv) G is finite (by assumption, or as a consequence of the previous three properties).

By the classification of finite abelian groups, up to isomorphism the group G must be of the
form

G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns ,

where n2 | n1, n3 | n2, . . . ns | ns−1. By condition (i), we may have at most two factors in such
a decomposition, i.e., G = Zn1 ⊕ Zn2 , with n2 | n1. (If n2 = 1, we simply write G = Zn1 , and
if n1 = 1, we write G = {0}, the trivial group.) Moreover, by condition (iii), we must have
n1 | 24, and so n1 ∈ {1, 2, 3, 4, 6, 8, 12, 24}. Thus, G must be precisely one of the 30 groups from
the following table:

n1 G

1 {0}
2 Z2 Z2 ⊕ Z2

3 Z3 Z3 ⊕ Z3

4 Z4 Z4 ⊕ Z2 Z4 ⊕ Z4

6 Z6 Z6 ⊕ Z2 Z6 ⊕ Z3 Z6 ⊕ Z6

8 Z8 Z8 ⊕ Z2 Z8 ⊕ Z4 Z8 ⊕ Z8

12 Z12 Z12 ⊕ Z2 Z12 ⊕ Z3 Z12 ⊕ Z4 Z12 ⊕ Z6 Z12 ⊕ Z12

24 Z24 Z24 ⊕ Z2 Z24 ⊕ Z3 Z24 ⊕ Z4 Z24 ⊕ Z6 Z24 ⊕ Z8 Z24 ⊕ Z12 Z24 ⊕ Z24

Remark: Any other group which satisfies the hypothesis of this problem must be isomorphic to
one of the groups on this table. For instance, Z4 ⊕ Z3

∼= Z12, Z8 ⊕ Z6
∼= Z24 ⊕ Z2, Z6 ⊕ Z4

∼=
Z12 ⊕ Z2, Z12 ⊕ Z8

∼= Z24 ⊕ Z4, etc.

Remark: Note that the above list coincides with the list of subgroups of Z24 ⊕ Z24.
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Problem 7. Consider the group G =

{(
a b
0 1

)
| a, b ∈ Z5, a 6= 0

}
.

(a) The group G has order 20 = 4 · 5, so it has Sylow 2- and 5-subgroups, of orders 4 and 5,
respectively. By Sylow III, n2 ≡ 1 (mod 2) and n2 | 5, implying n2 = 1 or 5. Likewise,
n5 ≡ 1 (mod 5) and n5 | 2, implying n5 = 1.

We start with the 2-Sylow subgroups. First note that Z×5 = {1, 2, 3, 4} is a cyclic group of
order 4, generated by either 2 or 3. Thus, G has a Sylow 2-subgroup, call it P , generated

by the diagonal matrix

(
2 0
0 1

)
, and this group is isomorphic to Z4. The subgroup P is

not normal, but rather, it has 5 distinct conjugates, obtained by conjugating P by the 5

matrices of the form

(
1 b
0 1

)
with b ∈ Z5. The complete list of Sylow 2-subgroups, then, is:

Syl2(G) =

{〈(
2 0
0 1

)〉
,

〈(
2 1
0 1

)〉
,

〈(
2 2
0 1

)〉
,

〈(
2 3
0 1

)〉
,

〈(
2 4
0 1

)〉}
.

None of these subgroups is normal, but rather, G acts transitively on Syl2(G) by permuting
these subgroups, as predicted by Sylow II.

Now on to the 5-Sylow subgroups. One such subgroup is the subgroup Q generated by the

matrix

(
1 1
0 1

)
. Clearly, Q ∼= Z5, and by the above discussion (based on Sylow III), we

know Q must be a normal subgroup.

(b) Is G a direct product of all its Sylow subgroups? As proven in class, if all Sylow subgroups
of a group G are normal, then G is the product of its Sylow subgroups. But we did not
prove the converse, so we must analyze this question more carefully, to see if the converse
is true, at least in this case.

There are two ways to interpret this question. The straightforward way is to interpret it
literally, that is, to decide whether

G ∼=
∏

P∈Syl(G)

P =
∏
p||G|

p prime

∏
P∈Sylp(G)

P.

In general, if one of the p-Sylows is not normal, i.e., np(G) > 1, then the order of the group
on the right side is at least np · |G|, which is greater than the order of G. Thus, the (literal)
converse to this statement indeed holds. For instance, in our case, the left side has order
|G| = 20, whereas the right side has order (5 ·4) · (1 ·5) = 100, so the answer to the question
is an emphatic no.

The other (more subtle) way to interpret this question is whether the given group G is
isomorphic to the direct product of p-Sylow subgroups, where p runs through the primes
dividing |G| as before, but with only a single p-Sylow chosen for each such prime (it does
not matter which one is chosen, since they are all conjugate by Sylow II, and thus, all
isomorphic). In other words, we must decide whether, across all p prime dividing |G|,

G ∼=
∏

P∈Sylp(G)/∼

P,

where ∼ denotes the conjugacy relation, and where Sylp(G)/ ∼ consists of a single equiv-
alence class (by Sylow II), from which a representative P is chosen. Now this is a harder
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question to answer, since the groups on both sides have the same order. In the problem
at hand, then, the modified question asks whether G is isomorphic to P × Q. And the
answer is yet again an emphatic no, since G is non-abelian (for otherwise G would not have
a non-normal subgroup such as P !), whereas P ×Q = Z4 × Z5 = Z20 is abelian.

Problem 8. Let G be a group and A,B ⊆ G be arbitrary subsets. Then we define

[A,B] := 〈[a, b] | a ∈ A, b ∈ B〉

to be the subgroup generated by commutators between A and B. In this notation, the derived
(commutator) subgroup may be expressed as G′ = [G,G]. Similarly, A′ = [A,A] refers to the
set of commutators of an arbitrary subset A ⊆ G.

(1) Show that H E G if and only if [G,H] ≤ H.

Proof. The “only if” will be considered the forward implication while the “if” will be
backward.

(=⇒) : Suppose that H E G so that for all g ∈ G and h ∈ H, we have

ghg−1 ∈ H =⇒ [g, h] = ghg−1h−1 ∈ H =⇒ [G,H] ≤ H.

(⇐=) : Suppose that [G,H] ≤ H so that for all g ∈ G and h ∈ H, there exists h1 ∈ H such
that

[g, h] = ghg−1h−1 = h1 =⇒ ghg−1 = h1h ∈ H =⇒ H E G.

(2) Prove that K ′ E G whenever K E G.

Proof. We will make use of the fact that commutator subgroups are characteristic (proven
below), which is to say that they are preserved under all automorphisms of the group they
are defined within, not only inner automorphisms. The argument used for this proof may
be applied to show that if H E K E G and H is characteristic in K, then H E G.

Let σa : G → G be the inner automorphism defined as conjugation by any given a ∈ G.
By hypothesis, K E G so that the restriction σa|K ∈ Aut(K). Because K ′ E K is
characteristic, the further restriction σa|K′ ∈ Aut(K ′). Because the choice of a ∈ G was
unrestricted, we conclude that all inner automorphisms of G restricted to K ′ have image
K ′; that is to say K ′ E G.

Commutator subgroups are characteristic: Let Φ ∈ Aut(G) be any automorphism
and g1, g2 ∈ G be any pair of elements. Because G′ is the subgroup generated by commu-
tators of elements and because there is a bijective correspondence between G′ and Φ(G′),
it suffices to show that Φ takes commutators to commutators. A generic commutator
[g1, g2] ∈ G′ may then be written as

[g1, g2] = g1g2g
−1
1 g−12 =⇒ Φ([g1, g2]) = Φ(g1)Φ(g2)Φ(g1)

−1Φ(g2)
−1 = [Φ(g1),Φ(g2)] ∈ G′,

where all that was used were properties of homomorphisms. Therefore, the restriction
Φ|G′ ∈ Aut(G′), so G′ is characteristic in G.

(3) If H,K E G such that G/H and G/K are Abelian, show that G/(H ∩K) is also Abelian.
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Proof. Here we will make use of the universal property of commutator subgroups; namely,
G/N is Abelian if and only if G′ ≤ N. By hypothesis, both H and K produce Abelian
quotients, so G′ ≤ H∩K. Invoking the fact that intersections of normal subgroups are again
normal, we may immediately apply the universal property to conclude that G/(H ∩K) is
Abelian.

(4) BONUS: If |G′| = m then each element x ∈ G has at most m conjugates.

Proof. Let xg := gxg−1 denote the conjugate of x by g, for any given x, g ∈ G. Observe
that

xgx−1 = [g, x] ∈ G′ =⇒ G′xg = G′x =⇒ Cl(x) ⊆ G′x =⇒ |Cl(x)| ≤
∣∣G′x∣∣ =

∣∣G′∣∣.
By hypothesis |G′| = m, so we immediately see that |Cl(x)| ≤ m as desired.

Problem 9. We call a group homomorphism ϕ : G→ H a monomorphism if ϕ ◦ f = ϕ ◦ g =⇒
f = g for homomorphisms f, g. Dually, we call a homomorphism ψ : G′ → H ′ an epimorphism
if f ′ ◦ ψ = g′ ◦ ψ =⇒ f ′ = g′ for any homomorphisms f ′, g′. Show that monomorphisms are
injective and that epimorphisms are surjective.

Proof. We will first confront the issue of injectivity and follow with surjectivity.

(1) Denote by K = Ker(ϕ) the kernel of the homomorphism ϕ : G→ H. Then K is a (normal)
subgroup of G. We may define homomorphisms f, g : K → G via the mappings

f(k) = e and g(k) = k

for all k ∈ K. Clearly ϕ ◦ f is the trivial map because all homomorphisms preserve the
identity. On the other hand, ϕ(k) = e for all k ∈ K, so ϕ ◦ g is also a trivial map due to
the fact that Im(g) = K. Because ϕ is a monomorphism,

ϕ ◦ f = ϕ ◦ g =⇒ f = g =⇒ Im(f) = Im(g) = {e} = K.

Because K = Ker(ϕ) is the trivial group, ϕ is injective.

(2) Denote by I the image Im(ψ) and by S the factor set H ′/I. Let us define group actions
f ′, g′ : H ′ × S → S via the mappings

f ′(h, aI) = aI and g′(h, aI) = ah−1I

for any a, h ∈ H ′ (check that these are indeed group actions). Through abuse of notation,
we conflate the group actions with their permutation reprsentations f ′, g′ : H ′ → Sym(S).
In particular, f ′ is a trivial homomorphism because every element of S is fixed by all of
H ′. By our definition of g′, observe that

Im(g′ ◦ ψ) = g′(I) = {1S} = Im(f ′ ◦ ψ)

is the trivial group. It is clear that homomorphisms sharing domain and codomain with
trivial image are equal. Now because ψ is epic

f ′ ◦ ψ = g′ ◦ ψ =⇒ f ′ = g′ =⇒ aI = ah−1I =⇒
(
ah−1

)−1
a = ha−1a = h ∈ I

for all a, h ∈ H ′. In particular, H ′ ≤ I =⇒ H ′ = I; i.e., ψ is surjective.
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