Solutions to Homework 4

1. Let S_{4} be the group of permutations of the set $\{1,2,3,4\}$. Consider the subgroup H generated by the cyclic permutation $\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1\end{array}\right)$.
(i) Write down all the right cosets and all the left cosets of H in S_{4}. (Make sure to indicate all the elements in each coset.)
Right cosets of H in G :

$$
\begin{aligned}
H & =\{(),(134),(143)\} \\
H(12) & =\{(12),(1342),(1432)\} \\
H(34) & =\{(34),(14),(13)\} \\
H(23) & =\{(23),(1234),(1423)\} \\
H(234) & =\{(234),(14)(23),(123)\} \\
H(132) & =\{(132),(12)(34),(142)\} \\
H(24) & =\{(24),(1324),(1243)\} \\
H(124) & =\{(124),(13)(24),(243)\} .
\end{aligned}
$$

Left cosets of H in G :

$$
\begin{aligned}
H & =\{(),(134),(143)\} \\
(12) H & =\{(12),(1234),(1243)\} \\
(34) H & =\{(34),(13),(14)\} \\
(23) H & =\{(23),(1324),(1432)\} \\
(234) H & =\{(234),(13)(24),(142)\} \\
(132) H & =\{(132),(14)(23),(243)\} \\
(24) H & =\{(24),(1342),(1423)\} \\
(124) H & =\{(124),(12)(34),(123)\}
\end{aligned}
$$

(ii) What is the index of H in S_{4} ?

$$
[G: H]=\#\{\text { right cosets }\}=\#\{\text { left cosets }\}=\frac{|G|}{|H|}=\frac{24}{3}=8
$$

(iii) Is H a normal subgroup of S_{4} ?

No, H is not a normal subgroup of G. One reason is that the right and left cosets of H and G do not coincide. For instance, $H(12) \neq(12) H$.
Alternatively, it is not the case that $g h g^{-1} \in H$ for all $g \in G$. For instance, taking $g=(12)$ and $h=(134) \in H$, we have $g h g^{-1}=(12)(134)(12)=(234) \notin H$.
2. Let $D_{4}=\left\langle a, b \mid a^{4}=b^{2}=1, b a=a^{-1} b\right\rangle$ be the dihedral group of order 8 (the group of symmetries of the square, with the generator a corresponding to 90° clockwise rotation and the generator b corresponding to a reflection in a vertical axis bisecting the square.)
(i) Let $H=\langle a\rangle$ be the cyclic subgroup generated by a. Write down all the right cosets and all the left cosets of H in D_{4}. Is H a normal subgroup?

Right cosets of H in G :

$$
\begin{aligned}
H & =\left\{1, a, a^{2}, a^{3}\right\} \\
H b & =\left\{b, a b, a^{2} b, a^{3} b\right\}
\end{aligned}
$$

Right cosets of H in G :

$$
\begin{aligned}
H & =\left\{1, a, a^{2}, a^{3}\right\} \\
b H & =\left\{b, b a, b a^{2}, b a^{3}\right\}
\end{aligned}
$$

Yes, H is a normal subgroup of G. Indeed, since $b a=a^{3} b, b a^{2}=a^{2} b$, and $b a^{3}=a b$, we have that $b H=H b$, and of course $H=H$, thus showing that the left and right cosets of H coincide. Alternatively, one may note that $b H=H b=G \backslash H$, an argument which shows that any index 2 subgroup of an arbitrary group G is normal.
(ii) Let $K=\langle b\rangle$ be the cyclic subgroup generated by b. Write down all the right cosets and all the left cosets of K in D_{4}. Is K a normal subgroup?
Right cosets of K in G :

$$
\begin{aligned}
K & =\{1, b\} \\
K a & =\{a, b a\} \\
K a^{2} & =\left\{a^{2}, b a^{2}\right\} \\
K a^{3} & =\left\{a^{3}, b a^{3}\right\}
\end{aligned}
$$

Left cosets of K in G :

$$
\begin{aligned}
K & =\{1, b\} \\
a K & =\{a, a b\} \\
a^{2} K & =\left\{a^{2}, a^{2} b\right\} \\
a^{3} K & =\left\{a^{3}, a^{3} b\right\}
\end{aligned}
$$

No, K is not a normal subgroup of G. Indeed, $K a \neq a K$. Alternatively, $a b a^{-1}=a^{2} b \notin K$, although $b \in K$.
3. Let G be set of all 2×2 matrices in $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ of the form $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$, with $a, b, c \in \mathbb{Z}_{3}$ and $a d \neq 0$.
(i) Show that G is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.

Since $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$ is a finite group, it is enough to verify that G is closed under matrix multiplication. Let $A, \bar{A} \in G$; then:

$$
A \cdot \bar{A}=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \cdot\left(\begin{array}{cc}
\bar{a} & \bar{b} \\
0 & \bar{d}
\end{array}\right)=\left(\begin{array}{cc}
a \bar{a} & a \bar{b}+b \bar{d} \\
0 & d \bar{d}
\end{array}\right)
$$

and this matrix clearly belongs to G, since $a d \neq 0$ and $\bar{a} \bar{d} \neq 0$ implies $(a \bar{a})(d \bar{d}) \neq 0$.
(ii) Find the order of G.

Since $a, d \in \mathbb{Z}_{3}^{\times}$and $b \in \mathbb{Z}_{3}$, we have that

$$
|G|=\left|\mathbb{Z}_{3}^{\times}\right| \cdot\left|\mathbb{Z}_{3}^{\times}\right| \cdot\left|\mathbb{Z}_{3}\right|=2 \cdot 2 \cdot 3=12
$$

(iii) Is G a normal subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$? No, G is not a normal subgroup. For instance, $A=$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \in G \text { and } B=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right) \text {, but } \\
& \quad B A B^{-1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
2 & 2
\end{array}\right) \notin G .
\end{aligned}
$$

4. Let G be a group. Let $f: G \rightarrow G$ be the function given by $f(x)=x^{-1}$. Moreover, for each $a \in G$, let $\phi_{a}: G \rightarrow G$ be the function given by $\phi_{a}(x)=a x a^{-1}$.
(i) Show that the functions f and ϕ_{a} are bijections.

The function f has inverse function $f^{-1}=f$; thus, f is a bijection.
The function ϕ_{a} has inverse function $\left(\phi_{a}\right)^{-1}=\phi_{a^{-1}}$; thus, ϕ_{a} is a bijection.
(ii) Show that f is an isomorphism if and only if G is abelian.

By part (i), the function f is an isomorphism if and only if it is a homomorphism, that is, $f(a b)=f(a) f(b)$ for all $a, b \in G$, meaning that $(a b)^{-1}=a^{-1} b^{-1}$, for all $a, b \in G$. Inverting both sides, this condition is equivalent to $a b=b a$ for all $a, b \in G$, which means that G is abelian.
(iii) Show that the functions ϕ_{a} are isomorphisms, for all $a \in G$.

Let $a \in G$. For all $b, c \in G$, properties of group operations give:

$$
\phi_{a}(b c)=a(b c) a^{-1}=(a b)\left(a^{-1} a\right)\left(c a^{-1}\right)=\left(a b a^{-1}\right)\left(a c a^{-1}\right)=\phi_{a}(b) \phi_{a}(c),
$$

showing that ϕ_{a} is a homomorphism. Therefore, by part (i), ϕ_{a} is an isomorphism.
5. Let $G=Q_{8} \times \mathbb{Z}_{2}$.
(i) Construct a surjective homomorphism $\varphi: G \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and write down $\varphi(x)$ for every $x \in G$.

First, we construct a surjective homomorphism $\psi: Q_{8} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by defining it on generators by $\psi(i)=(1,0)$ and $\psi(j)=(0,1)$ and verifying that the resulting map is indeed a homomorphism. We then have $\psi(k)=\psi(i j)=(1,1)$, and thus ψ is surjective.
Finally, we extend ψ to a homomorphism $\varphi: Q_{8} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by setting $\varphi(g, 0)=\varphi(g, 1)=$ $(\psi(g), 0)$. Explicitly, the (surjective) map φ is given by

x	$(1,0)$	$(-1,0)$	$(i, 0)$	$(-i, 0)$	$(j, 0)$	$(-j, 0)$	$(k, 0)$	$(-k, 0)$	
$\varphi(x)$	$(0,0)$	$(0,0)$	$(1,0)$	$(1,0)$	$(0,1)$	$(0,1)$	$(1,1)$	$(1,1)$	
x	$(1,1)$	$(-1,1)$	$(i, 1)$	$(-i, 1)$	$(j, 1)$	$(-j, 1)$	$(k, 1)$	$(-k, 1)$	
$\varphi(x)$	$(0,0)$	$(0,0)$	$(1,0)$	$(1,0)$	$(0,1)$	$(0,1)$	$(1,1)$	$(1,1)$	

(ii) Show that there is no surjective homomorphism $\varphi: G \rightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2}$.

Let's first show that there is no surjective homomorphism $\psi: Q_{8} \rightarrow \mathbb{Z}_{4}$. Indeed, if such a homomorphism were to exist, some element of order 4 in Q_{8} would have to map to $1 \in \mathbb{Z}_{4}$. Without loss of generality, we may assume $\psi(i)=1$. We now analyze the possible values for $\psi(j)$:

- If $\psi(j)=0$ or 2 , then $\psi(-1)=\psi\left(j^{2}\right)=\psi(j)+\psi(j)=0$.
- If $\psi(j)=1$ or 3 , then $\psi(k)=\psi(i j)=\psi(i)+\psi(j)=1+1=2$, and so $\psi(-1)=\psi\left(k^{2}\right)=$ $2+2=0$.

In either case, we got $\psi(-1)=0$. But this contradicts $\psi(-1)=\psi\left(i^{2}\right)=\psi(i)+\psi(i)=2$.

Alternatively, note that $i j i^{-1} j^{-1}=k(-i)(-j)=k^{2}=-1$ and $\psi\left(i j i^{-1} j^{-1}\right)=\psi(i)+\psi(j)-$ $\psi(i)-\psi(j)=0$. Thus, $\psi(-1)=0$. It follows that $\psi(i)^{2}=\psi\left(i^{2}\right)=\psi(-1)=0$, and so $\psi(\pm i)$ has order 2. Likewise, $\psi(\pm j)$ and $\psi(\pm k)$ also have order 2 , and so the image of ψ does contain $1 \in \mathbb{Z}_{4}$.
The existence of a surjective homomorphism $\varphi: G \rightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ is ruled out by similar arguments. For instance, note that $\varphi\left(i j i^{-1} j^{-1}, x\right)=(0,0)$, for $x=0$ or 1 in \mathbb{Z}_{2}. As above, this implies $\varphi(-1,0)=\varphi(-1,1)=(0,0)$. It follows that $\varphi(i, x)^{2}=\varphi\left(i^{2}, 2 x\right)=\varphi(-1,0)=0$, and so $\varphi(\pm i, 0)$ and $\varphi(\pm i, 1)$ have order 2 , and likewise with i replaced by j or k. Therefore, the image of φ consists only of elements of order 1 or 2 , and so cannot be equal to $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$, which has elements of order 4.
A more advanced argument goes as follows. Since $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ is abelian, any homomorphism from G to it must factor through the "abelianization" of G, which is the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. But this group has no elements of order 4 , so there is no surjective homomorphism $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2}$.

