Prof. Alexandru Suciu

MATH 3175

Group Theory

Spring 2024

Homework 4

- **1.** Let S_4 be the group of permutations of the set $\{1, 2, 3, 4\}$. Consider the subgroup H generated by the cyclic permutation $(1 \ 3 \ 4) = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 1 \end{pmatrix}$.
 - (i) Write down all the right cosets and all the left cosets of H in S_4 . (Make sure to indicate all the elements in each coset.)
 - (ii) What is the index of H in S_4 ?
 - (iii) Is H a normal subgroup of S_4 ?
- 2. Let $D_4 = \langle a, b \mid a^4 = b^2 = 1, ba = a^{-1}b \rangle$ be the dihedral group of order 8 (the group of symmetries of the square, with the generator *a* corresponding to 90° clockwise rotation and the generator *b* corresponding to a reflection in a vertical axis bisecting the square.)
 - (i) Let $H = \langle a \rangle$ be the cyclic subgroup generated by a. Write down all the right cosets and all the left cosets of H in D_4 . Is H a normal subgroup?
 - (ii) Let $K = \langle b \rangle$ be the cyclic subgroup generated by b. Write down all the right cosets and all the left cosets of K in D_4 . Is K a normal subgroup?

3. Let G be set of all
$$2 \times 2$$
 matrices in $\operatorname{GL}_2(\mathbb{Z}_3)$ of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, with $a, b, c \in \mathbb{Z}_3$ and $ad \neq 0$.

- (i) Show that G is a subgroup of $GL_2(\mathbb{Z}_3)$.
- (ii) Find the order of G.
- (iii) Is G a normal subgroup of $GL_2(\mathbb{Z}_3)$?
- **4.** Let G be a group. Let $f: G \to G$ be the function given by $f(x) = x^{-1}$. Moreover, for each $a \in G$, let $\phi_a: G \to G$ be the function given by $\phi_a(x) = axa^{-1}$.
 - (i) Show that the functions f and ϕ_a are bijections.
 - (ii) Show that f is an isomorphism if and only if G is abelian.
 - (iii) Show that the functions ϕ_a are isomorphisms, for all $a \in G$.
- 5. Let $G = Q_8 \times \mathbb{Z}_2$.
 - (i) Construct a surjective homomorphism $\varphi \colon G \to \mathbb{Z}_2 \times \mathbb{Z}_2$, and write down $\varphi(x)$ for every $x \in G$.
 - (ii) Show that there is no surjective homomorphism $\varphi \colon G \to \mathbb{Z}_4 \times \mathbb{Z}_2$.