Prof. Alexandru Suciu

Solutions to Homework 3

1. Let H and K be two subgroups of a group G.
(i) Is $H \cup K$ a subgroup of G ? If yes, give a proof, if no, give a counterexample.
$H \cup K$ need not be a subgroup of G. For instance, take $G=\mathbb{Z}_{6}, H=\langle 2\rangle=\{0,2,4\}$, and $K=\langle 3\rangle=$ $\{0,3\}$. Then $H \cup K=\{0,2,3,4\}$ is not a subgroup, since this subset of G is not closed under addition: $2,3 \in H \cup K$, yet $2+3=5 \notin H \cup K$.
(ii) Is $H \cap K$ a subgroup of G ? If yes, give a proof, if no, give a counterexample.
$H \cap K$ is a subgroup of G. Indeed, let $a, b \in H \cap K$ be two arbitrary elements; then
$a, b \in H \cap K \Rightarrow$
$a, b \in H \Rightarrow$
$a b^{-1} \in H$
since H is a subgroup
$a, b \in H \cap K \Rightarrow$
$a, b \in K \Rightarrow$
$a b^{-1} \in K$
since K is a subgroup.

Therefore, $a b^{-1} \in H \cap K$, and tis shows that $H \cap K$ is a subgroup of G.
2. Let $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8 .
(i) Write down the multiplication table of Q_{8} and list the orders of the elements in Q_{8}.

\cdot	1	-1	i	$-i$	j	$-j$	k	$-k$
1	1	-1	i	$-i$	j	$-j$	k	$-k$
-1	-1	1	$-i$	i	$-j$	j	$-k$	k
i	i	$-i$	-1	1	k	$-k$	$-j$	j
$-i$	$-i$	i	1	-1	$-k$	k	j	$-j$
j	j	$-j$	$-k$	k	-1	1	i	$-i$
$-j$	$-j$	j	k	$-k$	1	-1	$-i$	i
k	k	$-k$	j	$-j$	$-i$	i	-1	1
$-k$	$-k$	k	$-j$	j	i	$-i$	1	-1

g	1	-1	i	$-i$	j	$-j$	k	$-k$
$\operatorname{ord}(g)$	1	2	4	4	4	4	4	4

(ii) Find all the subgroups of Q_{8}, and determine which ones are cyclic.

There are 6 subgroups of $Q_{8}:\{1\},\{ \pm 1\},\{ \pm 1, \pm i\},\{ \pm 1, \pm j\},\{ \pm 1, \pm k\}, \mathbb{Q}_{8}$. All proper subgroups are cyclic (with generators $1,-1, i, j, k$, respectively), but Q_{8} itself is not cyclic (the minimum number of generators is 2 ; for instance, $Q_{8}=\langle i, j\rangle$).
(iii) Find all the subgroups of $Q_{8} \times \mathbb{Z}_{2}$, and determine which ones are cyclic.

There are 19 subgroups of $Q_{8} \times \mathbb{Z}_{2}$, with 10 of those being cyclic. Below is the complete list of subgroups (in decreasing size), indicating for each the following data: (1) the isomorphism type, (2) a generating set, (3) the list of elements, and (4) whether the group is cyclic or not.
(1) $Q_{8} \times \mathbb{Z}_{2}=\langle(i, 0),(j, 0),(1,1)\rangle=\{(1,0),(-1,0),(i, 0),(-i, 0),(j, 0),(-j, 0),(k, 0),(-k, 0),(1,1),(-1,1),(i, 1),($ is not cyclic.
(2) $Q_{8} \times\{0\}=\langle(i, 0),(j, 0)\rangle=\{(1,0),(-1,0),(i, 0),(-i, 0),(j, 0),(-j, 0),(k, 0),(-k, 0)\}$ is not cyclic.
(3) $Q_{8}=\langle(i, 1),(j, 1)\rangle=\{(1,0),(i, 1),(-1,0),(-i, 1),(j, 1),(k, 0),(-j, 1),(-k, 0)\}$ is not cyclic.
(4) $Q_{8}=\langle(i, 1),(k, 1)\rangle=\{(1,0),(i, 1),(-1,0),(-i, 1),(k, 1),(-j, 0),(-k, 1),(k, 0)\}$ is not cyclic.
(5) $Q_{8}=\langle(j, 1),(k, 1)\rangle=\{(1,0),(j, 1),(-1,0),(-j, 1),(k, 1),(i, 0),(-k, 1),(-i, 0)\}$ is not cyclic.
(6) $\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle(i, 0),(1,1)\rangle=\{(1,0),(-1,0),(i, 0),(-i, 0),(1,1),(-1,1),(i, 1),(-i, 1)\}$ is not cyclic.
(7) $\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle(j, 0),(1,1)\rangle=\{(1,0),(-1,0),(j, 0),(-j, 0),(1,1),(-1,1),(j, 1),(-j, 1)\}$ is not cyclic.
(8) $\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle(k, 0),(1,1)\rangle=\{(1,0),(-1,0),(k, 0),(-k, 0),(1,1),(-1,1),(k, 1),(-k, 1)\}$ is not cyclic.
(9) $\mathbb{Z}_{4} \times\{0\}=\langle(i, 0)\rangle=\{(1,0),(-1,0),(i, 0),(-i, 0)\}$ is cyclic.
(10) $\mathbb{Z}_{4} \times\{0\}=\langle(j, 0)\rangle=\{(1,0),(-1,0),(j, 0),(-j, 0)\}$ is cyclic.
(11) $\mathbb{Z}_{4} \times\{0\}=\langle(k, 0)\rangle=\{(1,0),(-1,0),(k, 0),(-k, 0)\}$ is cyclic.
(12) $\mathbb{Z}_{4}=\langle(i, 1)\rangle=\{(1,0),(-1,0),(i, 1),(-i, 1)\}$ is cyclic.
(13) $\mathbb{Z}_{4}=\langle(j, 1)\rangle=\{(1,0),(-1,0),(j, 1),(-j, 1)\}$ is cyclic.
(14) $\mathbb{Z}_{4}=\langle(k, 1)\rangle=\{(1,0),(-1,0),(k, 1),(-k, 1)\}$ is cyclic.
(15) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\langle(-1,0),(0,1)\rangle=\{(1,0),(-1,0),(0,1),(-1,1)\}$ is not cyclic.
(16) $\mathbb{Z}_{2} \times\{0\}=\langle(-1,0)\rangle=\{(1,0),(-1,0)\}$ is cyclic.
(17) $\{1\} \times \mathbb{Z}_{2}=\langle(1,1)\rangle=\{(1,0),(1,1)\}$ is cyclic.
(18) $\mathbb{Z}_{2}=\langle(-1,1)\rangle=\{(1,0),(-1,1)\}$ is cyclic.
(19) $\{1\} \times\{0\}=\langle(1,0)\rangle=\{(1,0)\}$ is cyclic.

Note: As illustrated in this example, not all subgroups of a direct product of groups are direct products of subgroups. For instance, $\mathbb{Z}_{2}=\langle(-1,1)\rangle$ is embedded "diagonally" in the direct product $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=$ $\langle(-1,0),(0,1)\rangle$. From the above list, subgroups (3), (4), (5), (12), (13), (14), and (18) are not direct products of subgroups of Q_{8} and \mathbb{Z}_{2}, but all other 12 subgroups on the list are direct products of subgroups.
3. Let \mathbb{Z}_{n}^{\times}be the multiplicative group of invertible elements in \mathbb{Z}_{n}.
(i) Which of the groups $\mathbb{Z}_{6}^{\times}, \mathbb{Z}_{8}^{\times}, \mathbb{Z}_{9}^{\times}$, and \mathbb{Z}_{15}^{\times}are cyclic?
(1) $\mathbb{Z}_{6}^{\times}=\{1,5\}=\langle 5\rangle$ is cyclic of order 2 .
(2) $\mathbb{Z}_{8}^{\times}=\{1,3,5,7\}=\langle 3,5\rangle$ is not cyclic (it is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$).
(3) $\mathbb{Z}_{9}^{\times}=\{1,2,4,5,7,8\}=\langle 2\rangle$ is cyclic of order 6 .
(4) $\mathbb{Z}_{15}^{\times}=\{1,2,4,7,8,11,13,14\}=\langle 2,14\rangle$ is not cyclic (it is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$).
(ii) Which of the groups $\mathbb{Z}_{7}^{\times}, \mathbb{Z}_{10}^{\times}, \mathbb{Z}_{12}^{\times}$, and \mathbb{Z}_{14}^{\times}are isomorphic?
(1) $\mathbb{Z}_{7}^{\times}=\{1,2,3,4,5,6\}=\langle 3\rangle$ is cyclic of order 6 .
(2) $\mathbb{Z}_{10}^{\times}=\{1,3,7,9\}=\langle 3\rangle$ is cyclic of order 4 .
(3) $\mathbb{Z}_{12}^{\times}=\{1,5,7,11\}=\langle 5,7\rangle$ is not cyclic (it is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$).
(4) $\mathbb{Z}_{14}^{\times}=\{1,3,5,9,11,13\}=\langle 3\rangle$ is cyclic of order 6 .

The groups in this list have orders $6,4,4$, and 6 . Groups of different order cannot be isomorphic (since there is no bijection between them).
Among the remaining two pairs we need to analyze, \mathbb{Z}_{10}^{\times}and \mathbb{Z}_{12}^{\times}are not isomorphic, since the first group is cyclic, whereas the second one is not (alternatively, the first one has elements of order 4 and the second has no such elements).

The groups in the final pair, \mathbb{Z}_{7}^{\times}and \mathbb{Z}_{14}^{\times}, are isomorphic, since both are cyclic of order 6 , and so both are isomorphic to \mathbb{Z}_{6}. An explicit isomorphism $\mathbb{Z}_{7}^{\times} \rightarrow \mathbb{Z}_{14}^{\times}$is given by $\left[3^{k}\right]_{7} \mapsto\left[3^{k}\right]_{14}$ for $1 \leqslant k \leqslant 6$, that is,

$$
[1]_{7} \mapsto[1]_{14},[2]_{7} \mapsto[9]_{14},[3]_{7} \mapsto[3]_{14},[4]_{7} \mapsto[11]_{14},[5]_{7} \mapsto[5]_{14},[6]_{7} \mapsto[13]_{14}
$$

4. Let $f: G \rightarrow H$ be a homomorphism.
(i) Show that $\operatorname{ord}(a) \geqslant \operatorname{ord}(f(a))$, for all $a \in G$.

Recall that the order of an element $a \in G$ is either infinite, or else it equals the positive integer $n:=$ $\min \left\{k \in \mathbb{N}: a^{k}=e_{G}\right\}$. Thus, there are two cases to consider.
First suppose $\operatorname{ord}(a)=\infty$. Then either $\operatorname{ord}(f(a))=\infty$ or $\operatorname{ord}(f(a))<\infty$; in the first case, $\operatorname{ord}(a)=$ $\operatorname{ord}(f(a))=\infty$, and in the second case $\operatorname{ord}(a)>\operatorname{ord}(f(a))$. Either way, ord $(a) \geqslant \operatorname{ord}(f(a))$.
Now suppose $n=\operatorname{ord}(a)<\infty$. Then $a^{n}=e_{G}$. Moreover, since f is a homomorphism, $f\left(a^{n}\right)=f(a)^{n}$. Therefore, $f(a)^{n}=e_{H}$. Hence, by the definition of the order of $f(a) \in H$, we must have ord $(f(a)) \leqslant n$, thus showing that $\operatorname{ord}(a) \geqslant \operatorname{ord}(f(a))$ in this case, too. (In fact, more is true: $\operatorname{ord}(f(a))$ divides $\operatorname{ord}(a)$.)
(ii) Give an example where $\operatorname{ord}(a)>\operatorname{ord}(f(a))$, for some homomorphism $f: G \rightarrow H$ and some $a \in G$.

Let G be any non-trivial group, let H be any group, and let $f: G \rightarrow H$ be the trivial homomorphism, given by $f(x)=e_{H}$ for all $x \in G$. Take an element $a \in G$ with $a \neq e_{G}$. Then ord $(a)>1$ but $\operatorname{ord}(f(a))=1$.
(iii) If f is an isomorphism, show that $\operatorname{ord}(a)=\operatorname{ord}(f(a))$, for all $a \in G$.

Let $f^{-1}: H \rightarrow G$ be the inverse homomorphism. By part (i), we have that $\operatorname{ord}(b) \geqslant \operatorname{ord}\left(f^{-1}(b)\right)$, for all $b \in H$. Therefore, setting $b=f(a)$, we get that $\operatorname{ord}(f(a)) \geqslant \operatorname{ord}\left(f^{-1}(f(a))\right)=\operatorname{ord}(a)$. Using now again part (i), we conclude that $\operatorname{ord}(a)=\operatorname{ord}(f(a))$, for all $a \in G$.
5. Let \mathbb{Z}_{n} be the cyclic group of order n and let \mathbb{Z} be the (additive) group of integers.
(i) List all the homomorphisms from \mathbb{Z}_{4} to \mathbb{Z}_{2}.
(1) The trivial homomorphism, $\mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2},[k]_{4} \rightarrow[0]_{2}$.
(2) The only non-trivial homomorphism, $\mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2},[k]_{4} \rightarrow[k]_{2}$.
(ii) List all the homomorphisms from \mathbb{Z}_{2} to \mathbb{Z}_{4}.
(1) The trivial homomorphism, $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4},[k]_{2} \rightarrow[0]_{4}$.
(2) The only non-trivial homomorphism, $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4},[k]_{2} \rightarrow[2 k]_{4}$.
(iii) List all the homomorphisms from \mathbb{Z}_{n} to \mathbb{Z}.

All elements in \mathbb{Z}_{n} have finite order, whereas all non-zero elements of \mathbb{Z} have infinite order. Therefore, by Problem 4(i), if $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}$ is a homomorphism, we must have $f\left([k]_{n}\right)=0$ for all $0 \leqslant k<n$. That is, the only homomorphisms from \mathbb{Z}_{n} to \mathbb{Z} is the trivial homomorphism.

