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Solutions to Homework 3

1. Let H and K be two subgroups of a group G.
(i) Is H Y K a subgroup of G? If yes, give a proof, if no, give a counterexample.

H Y K need not be a subgroup of G. For instance, take G “ Z6, H “ x2y “ t0, 2, 4u, and K “ x3y “

t0, 3u. Then H Y K “ t0, 2, 3, 4u is not a subgroup, since this subset of G is not closed under addition:
2, 3 P H Y K, yet 2 ` 3 “ 5 R H Y K.

(ii) Is H X K a subgroup of G? If yes, give a proof, if no, give a counterexample.

H X K is a subgroup of G. Indeed, let a, b P H X K be two arbitrary elements; then

a, b P H X K ñ a, b P H ñ ab´1 P H since H is a subgroup

a, b P H X K ñ a, b P K ñ ab´1 P K since K is a subgroup.

Therefore, ab´1 P H X K, and tis shows that H X K is a subgroup of G.

2. Let Q8 “ t˘1,˘i,˘ j,˘ku be the quaternion group of order 8.
(i) Write down the multiplication table of Q8 and list the orders of the elements in Q8.

¨ 1 ´1 i ´i j ´ j k ´k
1 1 ´1 i ´i j ´ j k ´k

´1 ´1 1 ´i i ´ j j ´k k
i i ´i ´1 1 k ´k ´ j j

´i ´i i 1 ´1 ´k k j ´ j
j j ´ j ´k k ´1 1 i ´i

´ j ´ j j k ´k 1 ´1 ´i i
k k ´k j ´ j ´i i ´1 1

´k ´k k ´ j j i ´i 1 ´1

g 1 ´1 i ´i j ´ j k ´k
ordpgq 1 2 4 4 4 4 4 4

(ii) Find all the subgroups of Q8, and determine which ones are cyclic.

There are 6 subgroups of Q8: t1u, t˘1u, t˘1,˘iu, t˘1,˘ ju, t˘1,˘ku, Q8. All proper subgroups are
cyclic (with generators 1, ´1, i, j, k, respectively), but Q8 itself is not cyclic (the minimum number of
generators is 2; for instance, Q8 “ xi, jy).

(iii) Find all the subgroups of Q8 ˆ Z2, and determine which ones are cyclic.

There are 19 subgroups of Q8 ˆZ2, with 10 of those being cyclic. Below is the complete list of subgroups
(in decreasing size), indicating for each the following data: (1) the isomorphism type, (2) a generating
set, (3) the list of elements, and (4) whether the group is cyclic or not.

(1) Q8ˆZ2 “ xpi, 0q, p j, 0q, p1, 1qy “ tp1, 0q, p´1, 0q, pi, 0q, p´i, 0q, p j, 0q, p´ j, 0q, pk, 0q, p´k, 0q, p1, 1q, p´1, 1q, pi, 1q, p´i, 1q, p j, 1q, p´ j, 1q, pk, 1q, p´k, 1qu

is not cyclic.

(2) Q8 ˆ t0u “ xpi, 0q, p j, 0qy “ tp1, 0q, p´1, 0q, pi, 0q, p´i, 0q, p j, 0q, p´ j, 0q, pk, 0q, p´k, 0qu is not
cyclic.
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(3) Q8 “ xpi, 1q, p j, 1qy “ tp1, 0q, pi, 1q, p´1, 0q, p´i, 1q, p j, 1q, pk, 0q, p´ j, 1q, p´k, 0qu is not cyclic.

(4) Q8 “ xpi, 1q, pk, 1qy “ tp1, 0q, pi, 1q, p´1, 0q, p´i, 1q, pk, 1q, p´ j, 0q, p´k, 1q, pk, 0qu is not cyclic.

(5) Q8 “ xp j, 1q, pk, 1qy “ tp1, 0q, p j, 1q, p´1, 0q, p´ j, 1q, pk, 1q, pi, 0q, p´k, 1q, p´i, 0qu is not cyclic.

(6) Z4 ˆ Z2 “ xpi, 0q, p1, 1qy “ tp1, 0q, p´1, 0q, pi, 0q, p´i, 0q, p1, 1q, p´1, 1q, pi, 1q, p´i, 1qu is not
cyclic.

(7) Z4 ˆ Z2 “ xp j, 0q, p1, 1qy “ tp1, 0q, p´1, 0q, p j, 0q, p´ j, 0q, p1, 1q, p´1, 1q, p j, 1q, p´ j, 1qu is not
cyclic.

(8) Z4 ˆ Z2 “ xpk, 0q, p1, 1qy “ tp1, 0q, p´1, 0q, pk, 0q, p´k, 0q, p1, 1q, p´1, 1q, pk, 1q, p´k, 1qu is not
cyclic.

(9) Z4 ˆ t0u “ xpi, 0qy “ tp1, 0q, p´1, 0q, pi, 0q, p´i, 0qu is cyclic.

(10) Z4 ˆ t0u “ xp j, 0qy “ tp1, 0q, p´1, 0q, p j, 0q, p´ j, 0qu is cyclic.

(11) Z4 ˆ t0u “ xpk, 0qy “ tp1, 0q, p´1, 0q, pk, 0q, p´k, 0qu is cyclic.

(12) Z4 “ xpi, 1qy “ tp1, 0q, p´1, 0q, pi, 1q, p´i, 1qu is cyclic.

(13) Z4 “ xp j, 1qy “ tp1, 0q, p´1, 0q, p j, 1q, p´ j, 1qu is cyclic.

(14) Z4 “ xpk, 1qy “ tp1, 0q, p´1, 0q, pk, 1q, p´k, 1qu is cyclic.

(15) Z2 ˆ Z2 “ xp´1, 0q, p0, 1qy “ tp1, 0q, p´1, 0q, p0, 1q, p´1, 1qu is not cyclic.

(16) Z2 ˆ t0u “ xp´1, 0qy “ tp1, 0q, p´1, 0qu is cyclic.

(17) t1u ˆ Z2 “ xp1, 1qy “ tp1, 0q, p1, 1qu is cyclic.

(18) Z2 “ xp´1, 1qy “ tp1, 0q, p´1, 1qu is cyclic.

(19) t1u ˆ t0u “ xp1, 0qy “ tp1, 0qu is cyclic.

Note: As illustrated in this example, not all subgroups of a direct product of groups are direct products
of subgroups. For instance, Z2 “ xp´1, 1qy is embedded “diagonally” in the direct product Z2 ˆ Z2 “

xp´1, 0q, p0, 1qy. From the above list, subgroups (3), (4), (5), (12), (13), (14), and (18) are not direct
products of subgroups of Q8 and Z2, but all other 12 subgroups on the list are direct products of subgroups.

3. Let Zˆ
n be the multiplicative group of invertible elements in Zn.

(i) Which of the groups Zˆ

6 , Zˆ

8 , Zˆ

9 , and Zˆ

15 are cyclic?

(1) Zˆ

6 “ t1, 5u “ x5y is cyclic of order 2.

(2) Zˆ

8 “ t1, 3, 5, 7u “ x3, 5y is not cyclic (it is isomorphic to Z2 ˆ Z2).

(3) Zˆ

9 “ t1, 2, 4, 5, 7, 8u “ x2y is cyclic of order 6.

(4) Zˆ

15 “ t1, 2, 4, 7, 8, 11, 13, 14u “ x2, 14y is not cyclic (it is isomorphic to Z4 ˆ Z2).

(ii) Which of the groups Zˆ

7 , Zˆ

10, Zˆ

12, and Zˆ

14 are isomorphic?

(1) Zˆ

7 “ t1, 2, 3, 4, 5, 6u “ x3y is cyclic of order 6.

(2) Zˆ

10 “ t1, 3, 7, 9u “ x3y is cyclic of order 4.

(3) Zˆ

12 “ t1, 5, 7, 11u “ x5, 7y is not cyclic (it is isomorphic to Z2 ˆ Z2).
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(4) Zˆ

14 “ t1, 3, 5, 9, 11, 13u “ x3y is cyclic of order 6.

The groups in this list have orders 6, 4, 4, and 6. Groups of different order cannot be isomorphic (since
there is no bijection between them).

Among the remaining two pairs we need to analyze, Zˆ

10 and Zˆ

12 are not isomorphic, since the first group
is cyclic, whereas the second one is not (alternatively, the first one has elements of order 4 and the second
has no such elements).

The groups in the final pair, Zˆ

7 and Zˆ

14, are isomorphic, since both are cyclic of order 6, and so both are
isomorphic to Z6. An explicit isomorphism Zˆ

7 Ñ Zˆ

14 is given by r3ks7 ÞÑ r3ks14 for 1 ď k ď 6, that is,

r1s7 ÞÑ r1s14, r2s7 ÞÑ r9s14, r3s7 ÞÑ r3s14, r4s7 ÞÑ r11s14, r5s7 ÞÑ r5s14, r6s7 ÞÑ r13s14.

4. Let f : G Ñ H be a homomorphism.
(i) Show that ordpaq ě ordp f paqq, for all a P G.

Recall that the order of an element a P G is either infinite, or else it equals the positive integer n B
mintk P N : ak “ eGu. Thus, there are two cases to consider.

First suppose ordpaq “ 8. Then either ordp f paqq “ 8 or ordp f paqq ă 8; in the first case, ordpaq “

ordp f paqq “ 8, and in the second case ordpaq ą ordp f paqq. Either way, ordpaq ě ordp f paqq.

Now suppose n “ ordpaq ă 8. Then an “ eG. Moreover, since f is a homomorphism, f panq “ f paqn.
Therefore, f paqn “ eH . Hence, by the definition of the order of f paq P H, we must have ordp f paqq ď n,
thus showing that ordpaq ě ordp f paqq in this case, too. (In fact, more is true: ordp f paqq divides ordpaq.)

(ii) Give an example where ordpaq ą ordp f paqq, for some homomorphism f : G Ñ H and some a P G.

Let G be any non-trivial group, let H be any group, and let f : G Ñ H be the trivial homomorphism, given
by f pxq “ eH for all x P G. Take an element a P G with a ‰ eG. Then ordpaq ą 1 but ordp f paqq “ 1.

(iii) If f is an isomorphism, show that ordpaq “ ordp f paqq, for all a P G.

Let f ´1 : H Ñ G be the inverse homomorphism. By part (i), we have that ordpbq ě ordp f ´1pbqq, for
all b P H. Therefore, setting b “ f paq, we get that ordp f paqq ě ordp f ´1p f paqqq “ ordpaq. Using now
again part (i), we conclude that ordpaq “ ordp f paqq, for all a P G.

5. Let Zn be the cyclic group of order n and let Z be the (additive) group of integers.
(i) List all the homomorphisms from Z4 to Z2.

(1) The trivial homomorphism, Z4 Ñ Z2, rks4 Ñ r0s2.

(2) The only non-trivial homomorphism, Z4 Ñ Z2, rks4 Ñ rks2.

(ii) List all the homomorphisms from Z2 to Z4.

(1) The trivial homomorphism, Z2 Ñ Z4, rks2 Ñ r0s4.

(2) The only non-trivial homomorphism, Z2 Ñ Z4, rks2 Ñ r2ks4.

(iii) List all the homomorphisms from Zn to Z.

All elements in Zn have finite order, whereas all non-zero elements of Z have infinite order. Therefore,
by Problem 4(i), if f : Zn Ñ Z is a homomorphism, we must have f prksnq “ 0 for all 0 ď k ă n. That is,
the only homomorphisms from Zn to Z is the trivial homomorphism.


