Prof. Alexandru Suciu

MATH 3175

Group Theory

Solutions for Homework 2

- **1.** Given a commutative ring R and an element $a \in R$, we say that
 - a is invertible (or, a unit) if there is an element $b \in R$ such that ab = 1.
 - a is a zero-divisor if there is an element $b \in R$ such that ab = 0.
 - a is an *idempotent* if $a^2 = a$.
 - For the ring $R = \mathbb{Z}_{18}$:
 - (i) List all the invertible elements, zero-divisors, and idempotents.
 - Invertible elements: 1, 5, 7, 11, 13, 17.
 - Zero-divisors: 0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16.
 - Idempotents: 0, 1, 9, 10.
 - (ii) Are there any elements which are neither zero-divisors nor invertible?

No

(iii) Are there any zero-divisors which are not idempotent?

Yes: 2, 3, 4, 6, 8, 12, 14, 15, 16.

- **2.** Let \mathbb{Z}_n be the (additive) group of integers modulo n, and let \mathbb{Z}_n^{\times} be the (multiplicative) group of invertible elements in \mathbb{Z}_n .
 - (i) Write down the addition and multiplication tables for \mathbb{Z}_6 .

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

(ii) Write down the multiplication table for \mathbb{Z}_8^{\times} .

•	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

- **3.** For each of the following groups, list all their elements, together with their orders.
 - (i) \mathbb{Z}_{18} .

																		17
$\operatorname{ord}(g)$	1	18	9	6	9	18	3	18	9	2	9	18	3	18	9	6	9	18

(ii) \mathbb{Z}_{18}^{\times} .

(iii) $\mathbb{Z}_4 \times \mathbb{Z}_2$.

(iv) $\mathbb{Z}_8^{\times} \times \mathbb{Z}_3$.

- 4. For each of the following groups, find *all* the cyclic subgroups of the group.
 - (i) $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. This is a cyclic group of order 8. All subgroups are cyclic, and there are 4 of them: $\{0\}, \{0, 4\}, \{0, 2, 4, 6\}, \text{ and } \mathbb{Z}_8$.
 - (ii) $\mathbb{Z}_9^{\times} = \{1, 2, 4, 5, 7, 8\}$. This is a cyclic group of order 6, generated by 2 (or by 5). All subgroups are cyclic, and there are 4 of them: $\{1\}, \{1, 8\}, \{1, 4, 7\}, \text{ and } \mathbb{Z}_9^{\times}$.
 - (iii) The symmetric group S_3 . This is a (non-abelian) group of order 6; in cycle notation, its elements are: $S_3 = \{(), (12), (13), (23), (123), (132)\}$. All its *proper* subgroups are cyclic, and there are 5 of them: $\{()\}, \{(), (12)\}, \{(), (13)\}, \{(), (23)\}, and \{(), (123), (132)\}$.
- 5. Let $G = \operatorname{GL}_2(\mathbb{R})$ be the (multiplicative) group of invertible 2×2 matrices with entries in \mathbb{R} . For each of the following sets of 2×2 matrices with real entries determine whether the set is a subgroup of G.

(i)
$$A = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| ab \neq 0 \right\}.$$

No, since this the matrices in A are not invertible, so A is not even a subset of G.

(ii)
$$B = \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \middle| bc \neq 0 \right\}.$$

B is a subset of *G*, but it is not a subgroup of *G*, since $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \notin B$, or, alternatively,

$$\begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & b \\ \bar{c} & 0 \end{pmatrix} = \begin{pmatrix} bb & 0 \\ 0 & c\bar{c} \end{pmatrix} \notin B.$$

(iii)
$$C = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \middle| a \neq 0 \right\}.$$

Yes, since $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \bar{a} & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \bar{a}^{-1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a\bar{a}^{-1} & 0 \\ 0 & 1 \end{pmatrix} \in C.$