Solutions for Homework 2

1. Given a commutative ring R and an element $a \in R$, we say that

- a is invertible (or, a unit) if there is an element $b \in R$ such that $a b=1$.
- a is a zero-divisor if there is an element $b \in R$ such that $a b=0$.
- a is an idempotent if $a^{2}=a$.

For the ring $R=\mathbb{Z}_{18}$:
(i) List all the invertible elements, zero-divisors, and idempotents.

- Invertible elements: $1,5,7,11,13,17$.
- Zero-divisors: $0,2,3,4,6,8,9,10,12,14,15,16$.
- Idempotents: 0, 1, 9, 10.
(ii) Are there any elements which are neither zero-divisors nor invertible?

No
(iii) Are there any zero-divisors which are not idempotent?

Yes: $2,3,4,6,8,12,14,15,16$.
2. Let \mathbb{Z}_{n} be the (additive) group of integers modulo n, and let \mathbb{Z}_{n}^{\times}be the (multiplicative) group of invertible elements in \mathbb{Z}_{n}.
(i) Write down the addition and multiplication tables for \mathbb{Z}_{6}.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

(ii) Write down the multiplication table for \mathbb{Z}_{8}^{\times}.

\cdot	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

3. For each of the following groups, list all their elements, together with their orders.
(i) \mathbb{Z}_{18}.

g	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\operatorname{ord}(g)$	1	18	9	6	9	18	3	18	9	2	9	18	3	18	9	6	9	18

(ii) \mathbb{Z}_{18}^{\times}.

$$
\begin{array}{c|c|c|c|c|c|c}
g & 1 & 5 & 7 & 11 & 13 & 17 \\
\hline \operatorname{ord}(g) & 1 & 6 & 3 & 6 & 3 & 2
\end{array}
$$

(iii) $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$.

g	$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$
$\operatorname{ord}(g)$	1	4	2	4	2	4	2	4

(iv) $\mathbb{Z}_{8}^{\times} \times \mathbb{Z}_{3}$.

g	$(1,0)$	$(3,0)$	$(5,0)$	$(7,0)$	$(1,1)$	$(3,1)$	$(5,1)$	$(7,1)$	$(1,2)$	$(3,2)$	$(5,2)$	$(7,2)$
$\operatorname{ord}(g)$	1	2	2	2	3	6	6	6	3	6	6	6

4. For each of the following groups, find all the cyclic subgroups of the group.
(i) $\mathbb{Z}_{8}=\{0,1,2,3,4,5,6,7,8\}$. This is a cyclic group of order 8 . All subgroups are cyclic, and there are 4 of them: $\{0\},\{0,4\},\{0,2,4,6\}$, and \mathbb{Z}_{8}.
(ii) $\mathbb{Z}_{9}^{\times}=\{1,2,4,5,7,8\}$. This is a cyclic group of order 6 , generated by 2 (or by 5). All subgroups are cyclic, and there are 4 of them: $\{1\},\{1,8\},\{1,4,7\}$, and \mathbb{Z}_{9}^{\times}.
(iii) The symmetric group S_{3}. This is a (non-abelian) group of order 6 ; in cycle notation, its elements are: $S_{3}=\{(),(12),(13),(23),(123),(132)\}$. All its proper subgroups are cyclic, and there are 5 of them: $\{()\},\{(),(12)\},\{(),(13)\},\{(),(23)\}$, and $\{(),(123),(132)\}$.
5. Let $G=\mathrm{GL}_{2}(\mathbb{R})$ be the (multiplicative) group of invertible 2×2 matrices with entries in \mathbb{R}. For each of the following sets of 2×2 matrices with real entries determine whether the set is a subgroup of G.
(i) $A=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a b \neq 0\right\}$.

No, since this the matrices in A are not invertible, so A is not even a subset of G.
(ii) $B=\left\{\left.\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right) \right\rvert\, b c \neq 0\right\}$.
B is a subset of G, but it is not a subgroup of G, since $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \notin B$, or, alternatively,

$$
\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & \bar{b} \\
\bar{c} & 0
\end{array}\right)=\left(\begin{array}{cc}
b \bar{b} & 0 \\
0 & c \bar{c}
\end{array}\right) \notin B .
$$

(iii) $C=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \right\rvert\, a \neq 0\right\}$.

Yes, since $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{cc}\bar{a} & 0 \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{cc}\bar{a}^{-1} & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}a \bar{a}^{-1} & 0 \\ 0 & 1\end{array}\right) \in C$.

