Prof. Alexandru Suciu Group Theory

Solutions for Homework 1

- 1. Write down all the possible multiplication tables on the set $S = \{0, 1\}$. In each case, determine whether the resulting magma (S, *) has (one or more or none) of the following properties:
 - (i) The operation * is associative (so that (S, *) is a *semigroup*).
 - (ii) The operation * has a (two-sided) identity element (so that (S, *) is a unital magma).
 - (iii) The operation * has the cancellation property (so that the multiplication table is a *Latin square*).
 - (iv) (S,*) is a group.

$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	The operation is associative, has no identity, not a Latin square, S is not a group.
$ \begin{array}{ c c } \hline 1 & 0 \\ 0 & 0 \end{array} $	The operation is not associative, has no identity, not a Latin square, S is not a group.
$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	The operation is not associative, has no identity, not a Latin square, S is not a group.
$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	The operation is not associative, has no identity, not a Latin square, S is not a group.
$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	The operation is associative, has identity 1, not a Latin square, S is not a group.
$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	The operation is not associative, has no identity, not a Latin square, S is not a group.
$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$	The operation is not associative, has no identity, not a Latin square, S is not a group.
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	The operation is associative, has identity 1, it is a Latin square, S is a group.
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	The operation is associative, has identity 0 , it is a Latin square, S is a group.
$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$	The operation is associative, has no identity, not a Latin square, S is not a group.
$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$	The operation is associative, has no identity, not a Latin square, S is not a group.
$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$	The operation is not associative, has no identity, not a Latin square, S is not a group.
$ \begin{array}{ c c } \hline 1 & 1 \\ 0 & 1 \end{array} $	The operation is not associative, has no identity, not a Latin square, S is not a group.
$ \begin{array}{ c c c } \hline 1 & 0 \\ 1 & 1 \end{array} $	The operation is not associative, has no identity, not a Latin square, S is not a group.
$ \begin{array}{c c} \hline 0 & 1 \\ 1 & 1 \end{array} $	The operation is associative, has identity 0 , not a Latin square, S is not a group.
1 1 1 1	The operation is associative, has no identity, not a Latin square, S is not a group.

2. Consider the two binary operations on the set $S = \{1, ..., 6\}$ given by the following multiplication tables (which are, in fact, reduced Latin squares):

Which (if any) of these binary operations gives S the structure of a group? Prove your answer.

The first table is a (self-indexing) Latin square that does not correspond to any group, since the corresponding operation * on S is not associative. For instance, (3*2)*5=6*5=3, whereas 3*(2*5)=3*6=5.

For the second table, one may verify directly that the corresponding operation * on S is associative (for instance, (3*2)*5=1*5=5 and 3*(2*5)=3*6=5, etc.), has identity equal to 1, and each element has an inverse $(1^{-1}=1, 2^{-1}=3, 3^{-1}=2, 4^{-1}=4, 5^{-1}=6, \text{ and } 6^{-1}=5)$, and therefore (S,*,1) is a group (in fact, an abelian group).

Alternatively, one may note that the second table corresponds to the Cayley table of the (additive) cyclic group $(\mathbb{Z}_6, +, [0]_6)$, under the bijection $\{1, 2, 3, 4, 5, 6\} \leftrightarrow \{[0]_6, [2]_6, [4]_6, [3]_6, [5]_6, [1]_6\}$.

3. Let G be the set of all 2×2 matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

with $a, b \in \mathbb{R}$ and $a \neq 0$.

(i) Show that G forms a group under matrix multiplication.

Totality: Let $a \neq 0$ and $c \neq 0$; then

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} ac & ad+b \\ 0 & 1 \end{pmatrix}.$$

Since $ac \neq 0$, this matrix belongs to G.

Associativity: Matrix multiplication is associative.

Identity: Taking a=1 and b=0, we see that the 2×2 identity matrix belongs to G

Inverses:

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a^{-1} & -a^{-1}b \\ 0 & 1 \end{pmatrix}.$$

Since $a^{-1} \neq 0$, this matrix belongs to G.

Thus, G is a group.

(ii) Find all elements of G that commute with $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \text{ if and only if } \begin{pmatrix} 3a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3a & 3b \\ 0 & 1 \end{pmatrix},$$

which only happens if b = 3b, that is, b = 0.

4. Let $G = \{x \in \mathbb{R} \mid x > 0 \text{ and } x \neq 1\}$. Define an operation * on G by $x * y = x^{\ln y}$ for all $x, y \in G$. Show that (G, *) is an abelian group.

Totality: Since x > 0, we also have $x^{\ln y} > 0$. Moreover, since $y \neq 1$, we have that $\ln y \neq 0$, and hence $x^{\ln y} \neq 1$. This shows that $x * y \in G$.

Associativity: $x * (y * z) = x^{\ln(y*z)} = x^{\ln(y^{\ln z})} = x^{(\ln z)(\ln y)} = (x^{\ln y})^{\ln z} = (x * y) * z$.

Identity is e (the base of natural logarithms): $e * x = e^{\ln x} = x$ and $x * e = x^{\ln e} = x^1 = x$.

Inverses: $x^{-1} = e^{1/\ln(x)}$. Indeed, $x * (e^{1/\ln(x)}) = x^{\ln(e^{1/\ln(x)})} = x^{1/\ln(x)} = e$, since $\ln(x^{1/\ln(x)}) = (1/\ln(x)) \cdot \ln(x) = 1 = \ln(e)$.

Commutativity: $\ln(x*y) = \ln(x^{\ln y}) = \ln(y) \ln(x) = \ln(x) \ln(y) = \ln(y^{\ln x}) = \ln(y*x)$, and thus x*y = y*x.

5. Let G be a finite group with an even number of elements and with identity e. Show that there must exist an element $a \in G$ such that $a \neq e$ and yet $a^2 = e$.

Since |G| is even, $G \neq \{e\}$, and so there must be an element $a_1 \in G$ such that $a_1 \neq e$. If $a_1^{-1} = a_1$, then $a_1^2 = e$ and $a = a_1$ is the desired element. Otherwise, again since |G| is even, there must be an element $a_2 \in G$ such that $a_2 \notin \{e, a_1, a_1^{-1}\}$. If $a_2^{-1} = a_2$, then $a_2^2 = e$ and $a = a_2$ is the desired element. Otherwise, we keep going, and at some point, since |G| is finite, we reach an index n such that either $a_n^{-1} = a_n$, that is $a_n^2 = e$, and so $a = a_n$ is the desired element, or $G = \{e, a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$ —which cannot happen, since |G| is even. This proves the claim.