Prof. Alexandru Suciu

Group Theory
Spring 2024

Solutions for Homework 1

1. Write down all the possible multiplication tables on the set $S=\{0,1\}$. In each case, determine whether the resulting magma $(S, *)$ has (one or more or none) of the following properties:
(i) The operation $*$ is associative (so that $(S, *)$ is a semigroup).
(ii) The operation $*$ has a (two-sided) identity element (so that $(S, *)$ is a unital magma).
(iii) The operation $*$ has the cancellation property (so that the multiplication table is a Latin square).
(iv) $(S, *)$ is a group.

0	0
0	0
1	0
0	0
0	1
0	0
0	0
1	0
0	0
0	1
1	1
0	0
1	0
1	0
1	0
0	1
0	1
1	0
0	1
0	1
0	0
1	1
1	1
1	0
1	1
0	1
1	0
1	1
0	1
1	1
1	1
1	1

The operation is associative, has no identity, not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.
The operation is associative, has identity 1 , not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.

The operation is associative, has identity 1 , it is a Latin square, S is a group.
The operation is associative, has identity 0 , it is a Latin square, S is a group.
The operation is associative, has no identity, not a Latin square, S is not a group.

The operation is associative, has no identity, not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.
The operation is not associative, has no identity, not a Latin square, S is not a group.
The operation is associative, has identity 0 , not a Latin square, S is not a group.
The operation is associative, has no identity, not a Latin square, S is not a group.
2. Consider the two binary operations on the set $S=\{1, \ldots, 6\}$ given by the following multiplication tables (which are, in fact, reduced Latin squares):

1	2	3	4	5	6
2	3	4	5	6	1
3	6	1	2	4	5
4	1	5	6	2	3
5	4	6	3	1	2
6	5	2	1	3	4

1	2	3	4	5	6
2	3	1	5	6	4
3	1	2	6	4	5
4	5	6	1	2	3
5	6	4	2	3	1
6	4	5	3	1	2

Which (if any) of these binary operations gives S the structure of a group? Prove your answer.
The first table is a (self-indexing) Latin square that does not correspond to any group, since the corresponding operation $*$ on S is not associative. For instance, $(3 * 2) * 5=6 * 5=3$, whereas $3 *(2 * 5)=3 * 6=5$.

For the second table, one may verify directly that the corresponding operation $*$ on S is associative (for instance, $(3 * 2) * 5=1 * 5=5$ and $3 *(2 * 5)=3 * 6=5$, etc), has identity equal to 1 , and each element has an inverse $\left(1^{-1}=1,2^{-1}=3,3^{-1}=2,4^{-1}=4,5^{-1}=6\right.$, and $\left.6^{-1}=5\right)$, and therefore $(S, *, 1)$ is a group (in fact, an abelian group).

Alternatively, one may note that the second table corresponds to the Cayley table of the (additive) cyclic group $\left(\mathbb{Z}_{6},+,[0]_{6}\right)$, under the bijection $\{1,2,3,4,5,6\} \leftrightarrow\left\{[0]_{6},[2]_{6},[4]_{6},[3]_{6},[5]_{6},[1]_{6}\right\}$.
3. Let G be the set of all 2×2 matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

with $a, b \in \mathbb{R}$ and $a \neq 0$.
(i) Show that G forms a group under matrix multiplication.

Totality: Let $a \neq 0$ and $c \neq 0$; then

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
c & d \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
a c & a d+b \\
0 & 1
\end{array}\right) .
$$

Since $a c \neq 0$, this matrix belongs to G.
Associativity: Matrix multiplication is associative.
Identity: Taking $a=1$ and $b=0$, we see that the 2×2 identity matrix belongs to G
Inverses:

$$
\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & -a^{-1} b \\
0 & 1
\end{array}\right)
$$

Since $a^{-1} \neq 0$, this matrix belongs to G.
Thus, G is a group.
(ii) Find all elements of G that commute with $\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$.
$\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ if and only if $\left(\begin{array}{cc}3 a & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}3 a & 3 b \\ 0 & 1\end{array}\right)$,
which only happens if $b=3 b$, that is, $b=0$.
4. Let $G=\{x \in \mathbb{R} \mid x>0$ and $x \neq 1\}$. Define an operation $*$ on G by $x * y=x^{\ln y}$ for all $x, y \in G$. Show that $(G, *)$ is an abelian group.

Totality: Since $x>0$, we also have $x^{\ln y}>0$. Moreover, since $y \neq 1$, we have that $\ln y \neq 0$, and hence $x^{\ln y} \neq 1$. This shows that $x * y \in G$.

Associativity: $x *(y * z)=x^{\ln (y * z)}=x^{\ln \left(y^{\ln z}\right)}=x^{(\ln z)(\ln y)}=\left(x^{\ln y}\right)^{\ln z}=(x * y) * z$.
Identity is e (the base of natural logarithms): $e * x=e^{\ln x}=x$ and $x * e=x^{\ln e}=x^{1}=x$.
Inverses: $x^{-1}=e^{1 / \ln (x)}$. Indeed, $x *\left(e^{1 / \ln (x)}\right)=x^{\ln \left(e^{1 / \ln (x)}\right)}=x^{1 / \ln (x)}=e$, since $\ln \left(x^{1 / \ln (x)}\right)=$ $(1 / \ln (x)) \cdot \ln (x)=1=\ln (e)$.

Commutativity: $\ln (x * y)=\ln \left(x^{\ln y}\right)=\ln (y) \ln (x)=\ln (x) \ln (y)=\ln \left(y^{\ln x}\right)=\ln (y * x)$, and thus $x * y=y * x$.
5. Let G be a finite group with an even number of elements and with identity e. Show that there must exist an element $a \in G$ such that $a \neq e$ and yet $a^{2}=e$.

Since $|G|$ is even, $G \neq\{e\}$, and so there must be an element $a_{1} \in G$ such that $a_{1} \neq e$. If $a_{1}^{-1}=a_{1}$, then $a_{1}^{2}=e$ and $a=a_{1}$ is the desired element. Otherwise, again since $|G|$ is even, there must be an element $a_{2} \in G$ such that $a_{2} \notin\left\{e, a_{1}, a_{1}^{-1}\right\}$. If $a_{2}^{-1}=a_{2}$, then $a_{2}^{2}=e$ and $a=a_{2}$ is the desired element. Otherwise, we keep going, and at some point, since $|G|$ is finite, we reach an index n such that either $a_{n}^{-1}=a_{n}$, that is $a_{n}^{2}=e$, and so $a=a_{n}$ is the desired element, or $G=\left\{e, a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$-which cannot happen, since $|G|$ is even. This proves the claim.

