MATH 3175

Prof. Alexandru Suciu

Group Theory Spring 2024

Solutions for Homework 1

1. Write down all the possible multiplication tables on the set S = {0,1}. In each case, determine
whether the resulting magma (S, ) has (one or more or none) of the following properties:

(i) The operation * is associative (so that (S, ) is a semigroup).

(i

)
(iii)
)

(iv) (S,x*) is a group.
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The operation * has a (two-sided) identity element (so that (S, *) is a unital magma).

The operation * has the cancellation property (so that the multiplication table is a Latin square).

associative, has no identity, not a Latin square, S is not a group.
not associative, has no identity, not a Latin square, S is not a group.
not associative, has no identity, not a Latin square, S is not a group.
not associative, has no identity, not a Latin square, S is not a group.
associative, has identity 1, not a Latin square, S is not a group.

not associative, has no identity, not a Latin square, S is not a group.
not associative, has no identity, not a Latin square, S is not a group.
associative, has identity 1, it is a Latin square, S is a group.
associative, has identity 0, it is a Latin square, S is a group.
associative, has no identity, not a Latin square, S is not a group.
associative, has no identity, not a Latin square, S is not a group.
not associative, has no identity, not a Latin square, S is not a group.
not associative, has no identity, not a Latin square, S is not a group.
not associative, has no identity, not a Latin square, S is not a group.
associative, has identity 0, not a Latin square, S is not a group.

associative, has no identity, not a Latin square, S is not a group.
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2. Cousider the two binary operations on the set S = {1,...,6} given by the following multiplication

tables (which are, in fact, reduced Latin squares):

1 2 3 4 5 6 1 2 3 4 5
2 3 45 61 23 15 6
3 6 1 2 45 31 2 6 4
4 1 5 6 2 3 4 5 6 1 2
5 4 6 3 1 2 5 6 4 2 3
6 5 2 1 3 4 6 4 5 3 1
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Which (if any) of these binary operations gives S the structure of a group? Prove your answer.

The first table is a (self-indexing) Latin square that does not correspond to any group, since the
corresponding operation % on S is not associative. For instance, (3 % 2) x5 = 6 x5 = 3, whereas

3%(2%5)=3%6=>5.

For the second table, one may verify directly that the corresponding operation * on S is associative
(for instance, (3%2)*5=1x5=>5and 3% (2+5) =3 %6 = 5, etc), has identity equal to 1, and each
element has an inverse (171 =1,271=3,3"1 =2 471 =4 571 =6, and 67! = 5), and therefore

(S,%,1) is a group (in fact, an abelian group).

Alternatively, one may note that the second table corresponds to the Cayley table of the (additive)
cyclic group (Zg, +, [0]g), under the bijection {1,2,3,4,5,6} <> {[0]s, [2]e, [4]6, [3]6, [5]6, [1]6}-

3. Let G be the set of all 2 x 2 matrices of the form

a b
0 1
with a,b € R and a # 0.
(i) Show that G forms a group under matrix multiplication.
Totality: Let a # 0 and ¢ # 0; then
a b\ (c d\ _[a b\ fac ad+b
0 1 0 1) \0 1 0 1 ‘
Since ac # 0, this matrix belongs to G.

Associativity: Matrix multiplication is associative.

Identity: Taking a =1 and b = 0, we see that the 2 x 2 identity matrix belongs to G

Inverses:

a b\ ' (a7t —a7'b
0 1 L0 1 '
Since a~! # 0, this matrix belongs to G.

Thus, G is a group.

(ii) Find all elements of G that commute with (g (1)>

a b\ (3 0\_ (3 0\ fa b\, . o . (3a b)_ (3a 3b
o 1/ \o 1) o 1) \o 1)maneony iy 1)~ o

which only happens if b = 3b, that is, b = 0.

4. Let G = {x € R | > 0and x # 1}. Define an operation * on G by z xy = 2'™¥ for all 2,y € G.

Show that (G, ) is an abelian group.
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Totality: Since z > 0, we also have z!™¥ > 0. Moreover, since y # 1, we have that Iny # 0, and
hence z™¥ # 1. This shows that 2 xy € G.

Associativity: @  (y * z) = gn(¥*2) = g™ ") = pn2)(ny) = (Fy)nz = (34 ) « 2.

Inx Ine _ .1

Identity is e (the base of natural logarithms): exx =e"* =z and z*xe =x T = .

Inverses: z~ 1 = /(@) Indeed, z * (e/12@)) = gn(e"/ ™) — 21/I@) = ¢ gince In(z!/ @) =

(1/1n(z)) - In(z) = 1 = In(e).

Commutativity: In(z * y) = In(z™¥) = In(y) In(z) = In(z)In(y) = In(y"™*) = In(y * =), and thus
THRY =yY*T.

5. Let G be a finite group with an even number of elements and with identity e. Show that there must
exist an element a € G such that a # e and yet a? = e.

Since |G| is even, G # {e}, and so there must be an element a; € G such that a; # e. If aj* = a4,
then a3 = e and a = a; is the desired element. Otherwise, again since |G| is even, there must
be an element as € G such that as ¢ {e,al,afl}. If a2_1 = ag, then a3 = e and a = ay is
the desired element. Otherwise, we keep going, and at some point, since |G| is finite, we reach
an index n such that either a;' = a,, that is a2 = e, and so a = a,, is the desired element, or
G ={e,ai,a;",...,an,a; ' }—which cannot happen, since |G| is even. This proves the claim.



