Assignment 4

Due Thursday August 6

Definition: Let G be a group and X be a set. Let $f: G \times X \rightarrow X$ where $(g, x) \mapsto g * x$ be a group action.

1. We say that $a \in G$ fixes $x \in X$ if $a * x=x$.
2. We write X_{a} for the set of elements fixed by a and G_{x} for the set of the group elements fixing x.
I.e. $X_{a}=\{x \in X \mid a * x=x\}$ (fixed set of a) and $G_{x}=\{a \in G \mid a * x=x\}$ (stabilizer subgroup of x).
3. The orbit of $x \in X$ is the set $G x=\{a * x \in X \mid a \in G\}=\{y \in X \mid \exists a \in G$ s.t. $a * x=y\}$.
4. We say that the group action is faithful if the only group element fixing all of X is the unit e. I.e. $\bigcap_{x \in X} G_{x}=\{e\}$.
5. We say that the group action is free if $G_{x}=\{e\}$ for every $x \in X$.
6. We say it is transitive if for every $x, y \in X$, there exists $g \in G$ such that $g * x=y$. This is also equivalent to only having one orbit.

Problem 1 Which of the following group actions are faithful? Which are free? Which are transitive? What are the orbits and stabilizer subgroups in each case?

1. The symmetric group on a set $X(\operatorname{Sym}(X))$ acts on X by $\operatorname{Sym}(X) \times X \rightarrow X$ where $(\sigma, x) \mapsto$ $\sigma(x)$.
2. The dihedral group D_{n} acts on the vertices of an n-gon, labelled by $\{1,2,3, \ldots, n\}$ in the usual fashion. For example: For D_{3}, the vertices of the triangle are labelled $1,2,3$ in clockwise order. Then $r * 1=2, r^{2} * 2=1, s * 1=1$ etc.
3. The general linear group $G L_{n}(\mathbb{R})$ acts on \mathbb{R}^{n} by matrix multiplication: $G L_{n}(\mathbb{R}) \times \mathbb{R} \rightarrow \mathbb{R}$ where $(M, x) \mapsto M x$.
4. (Cayley action) A group acts on itself by left multiplication: $G \times G \rightarrow G$ where $(a, b) \mapsto a b$.
5. A group acts on itself by conjugation: $G \times G \rightarrow G$ where $(a, b) \mapsto a b a^{-1}$.
6. Let H be a subgroup of G. Then G acts on the set of left cosets G / H by left multiplication: $G \times G / H \rightarrow G / H$ where $(a, b H) \mapsto a b H$.
7. Along with what you're asked in the question, first show that if H is a normal subgroup in G then G acts on G / H by conjugation: $G \times G / H \rightarrow G / H$ where $(a, b H) \mapsto a b a^{-1} H$.
8. Along with what you're asked in the question, first show that if $f: G \rightarrow \operatorname{Sym}(X)$ is a homomorphism, then G acts on X by $G \times X \rightarrow X$ where $(a, x) \mapsto f(a)(x)$ (this is evaluation of the function $f(a): X \rightarrow X$ at $x)$.

Problem 2

1. Prove that a group of order 1331 has non-trivial center. Hint: Write 1331 in its prime factorization, then use the class equation.
2. For every $n=4 k+2$ for $k \in \mathbb{N}$, find a group of order n that has trivial center, explain your answer.

Problem 3 Let G be a group and H a subgroup of G.

- Show that if $H \subset Z(G)$, then H is normal in G.
- Show that if $H \subset Z(G)$ and G / H is cyclic, then G is Abelian.

Problem 4 Let p be a prime. A group G is a p-group if the order of G is a power of p.

1. Show that every p-group has non-trivial center (hint: use the class equation).
2. Use 3.2 and 4.1 to show that every group of order p^{2} is Abelian.

Problem 5 List all the conjugacy classes in S_{6} and list their orders. Justify your counting argument. Make the same type of table as in lecture 19.

