Assignment 3

Due Thursday July 23

On this homework, 4 problems will be picked at random and graded. So make sure you complete all problems.

IMPORTANT: Always prove your answers! I expect full proofs justifying any yes or no answers!

Problem 1 Let $H = \{(x, y) \in \mathbb{R}^2 : y = 0\}.$

- 1. Sketch H in the plane.
- 2. Consider \mathbb{R}^2 as a group under vector addition. Is H a subgroup?
- 3. Describe the cosets of H in geometric terms and make a sketch of a few of the cosets.

Problem 2

- 1. Let G be a group and H a subgroup of G. Prove that there exists an injective homomorphism $f: H \to G$.
- 2. Prove that D_3 (symmetry group of equilateral triangle) is a subgroup of S_3 . Hint: What do elements of D_3 do to the vertices $\{1, 2, 3\}$ of the triangle? Does this tell you anything about how the elements in D_3 are related to the elements in S_3 ?
- 3. Prove that S_3 is isomorphic to D_3 .
- 4. Use part 2 as inspiration to prove that D_n is a subgroup of S_n .

Problem 3

- 1. Let G be an Abelian group, and let n by any positive integer. Prove that the function $\phi: G \to G$ defined by $\phi(x) = x^n$ is a homomorphism.
- 2. Is $\phi: G \to G$ (as above) still a homomorphism if G is not Abelian?
- 3. Let $G = (\mathbb{Z}_{15}^{\times} = \{1, 2, 4, 7, 8, 11, 13, 14\}, \cdot)$ where \cdot is multiplication modulo 15. Let n = 2, and find the kernel and image of ϕ .

Problem 4 Let G be a group.

- 1. Show that, if G is Abelian, then any subgroup of G is normal.
- 2. Is the intersection of a collection of normal subgroups of G normal?
- 3. Let K < H < G be subgroups of G, and suppose that K is normal in G. Is K normal in H?
- 4. Let K < H < G be subgroups of G, and suppose that K is normal in H. Is K normal in G?

Problem 5 Compute/find $Aut(S_3)$.

Problem 6 Show that $S_3 \times \mathbb{Z}_2$ is isomorphic to D_6 . How many subgroups, and how many normal subgroups does this group have?