Prof. Alexandru Suciu

MATH 3175

Group Theory

Spring 2024

Homework 2

- **1.** Given a commutative ring R and an element $a \in R$, we say that
 - a is *invertible* (or, a *unit*) if there is an element $b \in R$ such that ab = 1.
 - a is a zero-divisor if there is an element $b \in R$ such that ab = 0.
 - a is an *idempotent* if $a^2 = a$.

For the ring $R = \mathbb{Z}_{18}$:

- (i) List all the invertible elements, zero-divisors, and idempotents.
- (ii) Are there any elements which are neither zero-divisors nor invertible?
- (iii) Are there any zero-divisors which are not idempotent?
- **2.** Let \mathbb{Z}_n be the (additive) group of integers modulo n, and let \mathbb{Z}_n^{\times} be the (multiplicative) group of invertible elements in \mathbb{Z}_n .
 - (i) Write down the addition and multiplication tables for \mathbb{Z}_6 .
 - (ii) Write down the multiplication table for \mathbb{Z}_8^{\times} .
- 3. For each of the following groups, list all their elements, together with their orders.
 - (i) \mathbb{Z}_{18} .
 - (ii) \mathbb{Z}_{18}^{\times} .
 - (iii) $\mathbb{Z}_4 \times \mathbb{Z}_2$.
 - (iv) $\mathbb{Z}_8^{\times} \times \mathbb{Z}_3$.
- 4. For each of the following groups, find *all* the cyclic subgroups of the group.
 - (i) \mathbb{Z}_8 .
 - (ii) \mathbb{Z}_9^{\times} .
 - (iii) The symmetric group S_3 .
- 5. Let $G = \operatorname{GL}_2(\mathbb{R})$ be the (multiplicative) group of invertible 2×2 matrices with entries in \mathbb{R} . For each of the following sets of 2×2 matrices with real entries determine whether the set is a subgroup of G.

(i)
$$A = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| ab \neq 0 \right\}.$$

(ii)
$$B = \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \middle| bc \neq 0 \right\}.$$

(iii)
$$C = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \middle| a \neq 0 \right\}.$$