## Prof. Alexandru Suciu

Group Theory
Spring 2024

## Homework 2

1. Given a commutative ring $R$ and an element $a \in R$, we say that

- $a$ is invertible (or, a unit) if there is an element $b \in R$ such that $a b=1$.
- $a$ is a zero-divisor if there is an element $b \in R$ such that $a b=0$.
- $a$ is an idempotent if $a^{2}=a$.

For the ring $R=\mathbb{Z}_{18}$ :
(i) List all the invertible elements, zero-divisors, and idempotents.
(ii) Are there any elements which are neither zero-divisors nor invertible?
(iii) Are there any zero-divisors which are not idempotent?
2. Let $\mathbb{Z}_{n}$ be the (additive) group of integers modulo $n$, and let $\mathbb{Z}_{n}^{\times}$be the (multiplicative) group of invertible elements in $\mathbb{Z}_{n}$.
(i) Write down the addition and multiplication tables for $\mathbb{Z}_{6}$.
(ii) Write down the multiplication table for $\mathbb{Z}_{8}^{\times}$.
3. For each of the following groups, list all their elements, together with their orders.
(i) $\mathbb{Z}_{18}$.
(ii) $\mathbb{Z}_{18}^{\times}$.
(iii) $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$.
(iv) $\mathbb{Z}_{8}^{\times} \times \mathbb{Z}_{3}$.
4. For each of the following groups, find all the cyclic subgroups of the group.
(i) $\mathbb{Z}_{8}$.
(ii) $\mathbb{Z}_{9}^{\times}$.
(iii) The symmetric group $S_{3}$.
5. Let $G=\mathrm{GL}_{2}(\mathbb{R})$ be the (multiplicative) group of invertible $2 \times 2$ matrices with entries in $\mathbb{R}$. For each of the following sets of $2 \times 2$ matrices with real entries determine whether the set is a subgroup of $G$.
(i) $A=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a b \neq 0\right\}$.
(ii) $B=\left\{\left.\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right) \right\rvert\, b c \neq 0\right\}$.
(iii) $C=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \right\rvert\, a \neq 0\right\}$.

