Prof. Alexandru Suciu

MATH 3175

Group Theory

Spring 2024

Homework 1

1. Write down all the possible multiplication tables on the set $S=\{0,1\}$. In each case, determine whether the resulting magma $(S, *)$ has (one or more or none) of the following properties:
(i) The operation $*$ is associative (so that $(S, *)$ is a semigroup).
(ii) The operation $*$ has a (two-sided) identity element (so that $(S, *)$ is a unital magma).
(iii) The operation $*$ has the cancellation property (so that the multiplication table is a Latin square).
(iv) $(S, *)$ is a group.
2. Consider the two binary operations on the set $S=\{1, \ldots, 6\}$ given by the following multiplication tables (which are, in fact, reduced Latin squares):

1	2	3	4	5	6
2	3	4	5	6	1
3	6	1	2	4	5
4	1	5	6	2	3
5	4	6	3	1	2
6	5	2	1	3	4

1	2	3	4	5	6
2	3	1	5	6	4
3	1	2	6	4	5
4	5	6	1	2	3
5	6	4	2	3	1
6	4	5	3	1	2

Which (if any) of these binary operations gives S the structure of a group? Prove your answer.
3. Let G be the set of all 2×2 matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

with $a, b \in \mathbb{R}$ and $a \neq 0$.
(i) Show that G forms a group under matrix multiplication.
(ii) Find all elements of G that commute with $\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$.
4. Let $G=\{x \in \mathbb{R} \mid x>0$ and $x \neq 1\}$. Define an operation $*$ on G by $x * y=x^{\ln y}$ for all $x, y \in G$. Show that $(G, *)$ is an abelian group.
5. Let G be a finite group with an even number of elements and with identity e. Show that there must exist an element $a \in G$ such that $a \neq e$ and yet $a^{2}=e$.

