Prof. Alexandru Suciu TOPOLOGY

Fall 2023

FINAL EXAM

- 1. Recall that a space X is *locally compact* if, for every $x \in X$, there exists a compact subspace which contains an open neighborhood of x.
 - (a) Show that any set X endowed with the discrete topology is locally compact.
 - (b) Show that the space of rational numbers \mathbb{Q} (with the subspace topology inherited from \mathbb{R}) is not locally compact.
 - (c) Give an example of a locally compact space X and a continuous map $f: X \to Y$ such that f(X) is not locally compact.
 - (d) Now assume $f: X \to Y$ is both continuous and open. Show that f(X) is locally compact.
- **2.** A subspace $A \subset X$ is called a *deformation retract* of X if there is a retraction $r: X \to A$ with the property that $i \circ r \simeq \mathrm{id}_X$. Prove the following:
 - (a) Let $B \subset A \subset X$. If A is a deformation retract of X and B is a deformation retract of A, then B is a deformation retract of X.
 - (b) If A is a retract of X and X is contractible, then A is also contractible, and A is a deformation retraction of X.
- **3.** Let X be a topological space, let $A \subset X$ be a subspace, and let $i: A \hookrightarrow X$ the inclusion map. Fix a basepoint $a_0 \in A$, and consider the induced homomorphism on fundamental groups, $i_{\sharp} \colon \pi_1(A, a_0) \to \pi_1(X, a_0)$.
 - (a) Suppose A is a retract of X. Show that i_{\sharp} is injective.
 - (b) Give an example of an inclusion $i: A \hookrightarrow X$ where i_{\sharp} is not injective.
 - (c) Suppose A is a deformation-retract of X. Show that i_{\sharp} is an isomorphism.
 - (d) Give an example of an inclusion $i: A \hookrightarrow X$ that admits a retraction $r: X \to A$ for which i_{\sharp} is not an isomorphism.

- **4.** Let $f: X \to Y$ be a continuous map.
 - (a) Show that if X is contractible and Y is path connected, then f is null-homotopic.
 - (b) Show that if $Y = S^n$ and f is not surjective, then f is null-homotopic.
- **5.** Let $g: [0,1] \to X$ be a path with $g(0) = x_0$ and $g(1) = x_1$, and let $\Phi_g: \pi_1(X, x_0) \to \pi_1(X, x_1)$ be the "change of basepoint" homomorphism determined by g.
 - (a) If $h: [0,1] \to X$ is a path with $h(0) = x_1$, show that $\Phi_{g*h} = \Phi_h \circ \Phi_g$.
 - (b) Let $f: X \to Y$ be a map. Show that the following diagram commutes.

$$\pi_1(X, x_0) \xrightarrow{f_{\sharp}} \pi_1(Y, f(x_0))
\downarrow \Phi_g \qquad \qquad \downarrow \Phi_{f \circ g}
\pi_1(X, x_1) \xrightarrow{f_{\sharp}} \pi_1(Y, f(x_1))$$

- **6.** Let X be a path-connected space, with basepoint $x_0 \in X$. Show that the following are equivalent.
 - (a) If g and h are any two paths from x_0 to some $x_1 \in X$, then $\Phi_g = \Phi_h$.
 - (b) $\pi_1(X, x_0)$ is abelian.
- 7. Let $p: E \to B$ be a covering map. Suppose E is path-connected, and $\pi_1(B, b_0) = 0$, for some $b_0 \in B$.
 - (a) Show that $\pi_1(B, b) = 0$, for all $b \in B$.
 - (b) Show that p is a homeomorphism.
- **8.** Let $S^1=\{z\in\mathbb{C}\mid |z|=1\}$, and let $p\colon\mathbb{R}\to S^1$ be the standard covering map given by $p(t)=e^{2\pi it}$. Consider the product covering map $p\times p\colon\mathbb{R}\times\mathbb{R}\to S^1\times S^1$, and let $f\colon[0,1]\to S^1\times S^1$ be the loop given by $f(t)=(e^{4\pi it},e^{6\pi it})$. Find the lift $\tilde{f}\colon[0,1]\to\mathbb{R}^2$ of f at (0,0), and sketch both f and \tilde{f} .