Definition 1. A sequence $\left(s_{n}\right)$ converges to the number S if given any $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left|s_{n}-S\right|<\epsilon$ for all $n \geq N$.

Definition 2. A number U is called the least upper bound or sup of a set S if
(1) $s \leq U$ for all $s \in S$, and
(2) If L is any number with $L<U$, then there is an element $s \in S$ with $L<s$.

Completeness Axiom. Every nonempty subset S of the real numbers \mathbb{R} that is bounded above has a least upper bound.

Definition 3. Given a sequence $\left(x_{n}\right)$ and $N \in \mathbb{N}$, let $v_{N}=\sup \left\{x_{n}: n \geq N\right\}$. Then $\left(v_{N}\right)$ is a decreasing sequence, and hence, has a limit. We define $\lim \sup x_{n}$ to be the limit of the sequence $\left(v_{N}\right)$.
Set $u_{N}=\inf \left\{x_{n}: n \geq N\right\}$. Then $\left(u_{N}\right)$ is an increasing sequence, and hence, has a limit. We define $\lim \inf x_{n}$ to be the limit of the sequence $\left(u_{N}\right)$. Moreover, $u_{N} \leq v_{N}$ for all $N \in \mathbb{N}$.

Definition 4. A sequence $\left(x_{n}\right)$ is called a Cauchy sequence if given any $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left|s_{m}-s_{n}\right|<\epsilon$ for all $n \geq N$ and $m \geq N$.

Theorem 1. Every Cauchy sequence is bounded. A sequence of real numbers is a Cauchy sequence if and only if it is convergent.

Theorem 2. Every bounded monotone sequence of real numbers converges.
Theorem 3. Every subsequence $\left(x_{n_{k}}\right)$ of a convergent sequence $\left(x_{n}\right)$ converges, and $\lim _{k \rightarrow \infty} x_{n_{k}}=$ $\lim _{n \rightarrow \infty} x_{n}$.

Theorem 4 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.
Definition 5 ($\delta-\epsilon$ definition of continuity). Let f be a real-valued function whose domain, $\operatorname{dom}(f)$, is a subset of \mathbb{R}. The function f is continuous at a point $x_{0} \in \operatorname{dom}(f)$ if and only if for each $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \quad \text { for all } x \in \operatorname{dom}(f) \text { with }\left|x-x_{0}\right|<\delta
$$

Theorem 5 (Extreme Value Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then f is bounded and it assumes its maximum and minimum values on $[a, b]$.

Theorem 6 (Intermediate Value Theorem). Let $f: I \rightarrow \mathbb{R}$ be a continuous function defined on an interval I. Suppose a, b are two numbers in I such that $a<b$ and suppose y is a real number that lies between $f(a)$ and $f(b)$. Then there is an $x \in(a, b)$ such $f(x)=y$.

Definition 6 (Uniform continuity). Let f be a real-valued function whose domain, dom (f), is a subset of \mathbb{R}. The function f is uniformly continuous on $\operatorname{dom}(f)$ if and only if for each $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-f(y)|<\epsilon \quad \text { for all } x, y \in \operatorname{dom}(f) \text { with }|x-y|<\delta .
$$

Theorem 7. If $f: S \rightarrow \mathbb{R}$ is uniformly continuous of a set $S \subset \mathbb{R}$, and if $\left(x_{n}\right)$ is a Cauchy sequence in S, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R}.

Theorem 8. If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function, then f is uniformly continuous on $[a, b]$.

Theorem 9 (Weierstrass M-test). Let $\left(M_{k}\right)$ be a sequence of nonnegative real numbers such that $\sum_{k=1}^{\infty} M_{k}<\infty$. If $\left|g_{k}(x)\right| \leq M_{k}$ for all x in a set S, then $\sum_{k=1}^{\infty} g_{k}$ converges uniformly on S.
Theorem 10 (Mean Value Theorem). Let f be a continuous function on $[a, b]$ that is differentiable on (a, b). Then there exists [at least one] $x \in(a, b)$ such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

Definition 7. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function which admits derivatives of arbitrary order at a point $c \in(a, b)$. Then the Taylor series of f about c is the series $\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{n!}(x-c)^{k}$, while the n-th remainder is the difference $R_{n}(x)=f(x)-\sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{n!}(x-c)^{k}$.
Theorem 11 (Taylor's Theorem). For every $x \in(a, b), x \neq c$, there is a y between c and x such that

$$
R_{n}(x)=\frac{f^{(n)}(y)}{n!}(x-c)^{n} .
$$

Corollary 1. Suppose there is a constant $C>0$ such that $\left|f^{(n)}(x)\right|<C$ for all $x \in(a, b)$ and all $n \geq 0$. Then $\lim _{n \rightarrow \infty} R_{n}(x)=0$, for all $x \in(a, b)$.
Definition 8. Let f be a bounded function on $[a, b]$, and let $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ be a partition of $[a, b]$. Set
$U(f, P)=\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right) \cdot\left(t_{k}-t_{k-1}\right) \quad$ and $\quad L(f, P)=\sum_{k=1}^{n} m\left(f,\left[t_{k-1}, t_{k}\right]\right) \cdot\left(t_{k}-t_{k-1}\right)$,
where $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=\sup \left\{f(t): t \in\left[t_{k-1}, t_{k}\right]\right\}$ and $m\left(f,\left[t_{k-1}, t_{k}\right]\right)=\inf \left\{f(t): t \in\left[t_{k-1}, t_{k}\right]\right\}$, and set
$U(f)=\inf \{U(f, P): P$ a partition of $[a, b]\} \quad$ and $\quad L(f)=\sup \{L(f, P): P$ a partition of $[a, b]\}$.
We say that f is integrable on $[a, b]$ if $U(f)=L(f) \in \mathbb{R}$, in which case we set $\int_{a}^{b} f:=U(f)=L(f)$.
Theorem 12. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, and let P be any partition of $[a, b]$. Then $L(f, P) \leq L(f) \leq U(f) \leq U(f, P)$, and hence $0 \leq U(f)-L(f) \leq U(f, P)-L(f, P)$.
Theorem 13. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Then the following are equivalent.
(1) f is integrable on $[a, b]$
(2) For every $\epsilon>0$, there is a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$.
(3) For every $\epsilon>0$, there is a $\delta>0$ such that: if P is a partition of $[a, b]$ with $\operatorname{mesh}(P)<\delta$, then $U(f, P)-L(f, P)<\epsilon$.
Theorem 14 (Riemann's Theorem). If f is continuous on $[a, b]$, then f is integrable on $[a, b]$.
Theorem 15. If f is monotonic on $[a, b]$, then f is integrable on $[a, b]$.
Theorem 16 (First Fundamental Theorem of Calculus). If g is a continuous function on $[a, b]$ that is differentiable on (a, b), and if g^{\prime} is integrable on $[a, b]$, then

$$
\int_{a}^{b} g^{\prime}=g(b)-g(a)
$$

Theorem 17 (Second Fundamental Theorem of Calculus). Let f be an integrable function on $[a, b]$. For $x \in[a, b]$, let

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then F is continuous on $[a, b]$. If f is continuous at $x_{0} \in(a, b)$, then F is differentiable at x_{0} and

$$
F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)
$$

