MATH 3150

Definition 1. A sequence (s_n) converges to the number *S* if given any $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $|s_n - S| < \epsilon$ for all $n \ge N$.

Definition 2. A number U is called the *least upper bound or* sup of a set S if

- (1) $s \le U$ for all $s \in S$, and
- (2) If *L* is any number with L < U, then there is an element $s \in S$ with L < s.

Completeness Axiom. Every nonempty subset *S* of the real numbers \mathbb{R} that is bounded above has a least upper bound.

Definition 3. Given a sequence (x_n) and $N \in \mathbb{N}$, let $v_N = \sup\{x_n : n \ge N\}$. Then (v_N) is a decreasing sequence, and hence, has a limit. We define $\limsup x_n$ to be the limit of the sequence (v_N) .

Set $u_N = \inf\{x_n : n \ge N\}$. Then (u_N) is an increasing sequence, and hence, has a limit. We define lim inf x_n to be the limit of the sequence (u_N) . Moreover, $u_N \le v_N$ for all $N \in \mathbb{N}$.

Definition 4. A sequence (x_n) is called a *Cauchy sequence* if given any $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $|s_m - s_n| < \epsilon$ for all $n \ge N$ and $m \ge N$.

Theorem 1. Every Cauchy sequence is bounded. A sequence of real numbers is a Cauchy sequence if and only if it is convergent.

Theorem 2. Every bounded monotone sequence of real numbers converges.

Theorem 3. Every subsequence (x_{n_k}) of a convergent sequence (x_n) converges, and $\lim_{k\to\infty} x_{n_k} = \lim_{n\to\infty} x_n$.

Theorem 4 (Bolzano–Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Definition 5 ($\delta - \epsilon$ definition of continuity). Let *f* be a real-valued function whose domain, dom(*f*), is a subset of \mathbb{R} . The function *f* is *continuous* at a point $x_0 \in \text{dom}(f)$ if and only if for each $\epsilon > 0$ there exists a $\delta > 0$ such that

 $|f(x) - f(x_0)| < \epsilon$ for all $x \in \text{dom}(f)$ with $|x - x_0| < \delta$.

Theorem 5 (Extreme Value Theorem). Let $f: [a, b] \to \mathbb{R}$ be a continuous function. Then f is bounded and it assumes its maximum and minimum values on [a, b].

Theorem 6 (Intermediate Value Theorem). Let $f: I \to \mathbb{R}$ be a continuous function defined on an interval *I*. Suppose *a*, *b* are two numbers in *I* such that a < b and suppose *y* is a real number that lies between f(a) and f(b). Then there is an $x \in (a, b)$ such f(x) = y.

Definition 6 (Uniform continuity). Let f be a real-valued function whose domain, dom(f), is a subset of \mathbb{R} . The function f is *uniformly continuous* on dom(f) if and only if for each $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - f(y)| < \epsilon$$
 for all $x, y \in \text{dom}(f)$ with $|x - y| < \delta$.

Theorem 7. If $f: S \to \mathbb{R}$ is uniformly continuous of a set $S \subset \mathbb{R}$, and if (x_n) is a Cauchy sequence in *S*, then $(f(x_n))$ is a Cauchy sequence in \mathbb{R} .

Theorem 8. If $f: [a, b] \to \mathbb{R}$ is a continuous function, then f is uniformly continuous on [a, b].

Theorem 9 (Weierstrass M-test). Let (M_k) be a sequence of nonnegative real numbers such that $\sum_{k=1}^{\infty} M_k < \infty$. If $|g_k(x)| \le M_k$ for all x in a set S, then $\sum_{k=1}^{\infty} g_k$ converges uniformly on S.

Theorem 10 (Mean Value Theorem). Let f be a continuous function on [a, b] that is differentiable on (a, b). Then there exists [at least one] $x \in (a, b)$ such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Definition 7. Let $f: (a, b) \to \mathbb{R}$ be a function which admits derivatives of arbitrary order at a point $c \in (a, b)$. Then the *Taylor series of f about c* is the series $\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{n!} (x - c)^k$, while the *n*-th remainder is the difference $R_n(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{n!} (x - c)^k$.

Theorem 11 (Taylor's Theorem). For every $x \in (a, b)$, $x \neq c$, there is a *y* between *c* and *x* such that

$$R_n(x) = \frac{f^{(n)}(y)}{n!}(x-c)^n.$$

Corollary 1. Suppose there is a constant C > 0 such that $|f^{(n)}(x)| < C$ for all $x \in (a, b)$ and all $n \ge 0$. Then $\lim_{n\to\infty} R_n(x) = 0$, for all $x \in (a, b)$.

Definition 8. Let *f* be a bounded function on [a, b], and let $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ be a partition of [a, b]. Set

$$U(f,P) = \sum_{k=1}^{n} M(f,[t_{k-1},t_k]) \cdot (t_k - t_{k-1}) \quad \text{and} \quad L(f,P) = \sum_{k=1}^{n} m(f,[t_{k-1},t_k]) \cdot (t_k - t_{k-1}),$$

where $M(f, [t_{k-1}, t_k]) = \sup\{f(t): t \in [t_{k-1}, t_k]\}$ and $m(f, [t_{k-1}, t_k]) = \inf\{f(t): t \in [t_{k-1}, t_k]\}$, and set

 $U(f) = \inf\{U(f, P): P \text{ a partition of } [a, b]\}$ and $L(f) = \sup\{L(f, P): P \text{ a partition of } [a, b]\}.$

We say that f is integrable on [a, b] if $U(f) = L(f) \in \mathbb{R}$, in which case we set $\int_a^b f := U(f) = L(f)$.

Theorem 12. Let $f: [a, b] \to \mathbb{R}$ be a bounded function, and let *P* be any partition of [a, b]. Then $L(f, P) \le L(f) \le U(f) \le U(f, P)$, and hence $0 \le U(f) - L(f) \le U(f, P) - L(f, P)$.

Theorem 13. Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Then the following are equivalent.

- (1) f is integrable on [a, b]
- (2) For every $\epsilon > 0$, there is a partition *P* of [a, b] such that $U(f, P) L(f, P) < \epsilon$.
- (3) For every $\epsilon > 0$, there is a $\delta > 0$ such that: if *P* is a partition of [a, b] with mesh(*P*) < δ , then $U(f, P) L(f, P) < \epsilon$.

Theorem 14 (Riemann's Theorem). If f is continuous on [a, b], then f is integrable on [a, b].

Theorem 15. If f is monotonic on [a, b], then f is integrable on [a, b].

Theorem 16 (First Fundamental Theorem of Calculus). If g is a continuous function on [a, b] that is differentiable on (a, b), and if g' is integrable on [a, b], then

$$\int_{a}^{b} g' = g(b) - g(a)$$

Theorem 17 (Second Fundamental Theorem of Calculus). Let f be an integrable function on [a, b]. For $x \in [a, b]$, let

$$F(x) = \int_{a}^{x} f(t) \, dt.$$

Then F is continuous on [a, b]. If f is continuous at $x_0 \in (a, b)$, then F is differentiable at x_0 and

$$F'(x_0) = f(x_0)$$