For each problem be sure to explain the steps in your argument and fully justify your conclusions.

1. For the power series $\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}} x^{n}$,
(a) $(9 \mathrm{pts})$ Find the radius of convergence.

Solution: Use the ratio test with $a_{n}=\frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}} x^{n}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{2^{2 n+2}|x|^{n+1}\left(3^{3 n}\right) \sqrt{n}}{2^{2 n}|x|^{n}\left(3^{3 n+3}\right) \sqrt{n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{2^{2}|x|}{3^{3}} \sqrt{\frac{n}{n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{4|x|}{27} \sqrt{\frac{1}{1+1 / n}} \\
& =\frac{4|x|}{27}
\end{aligned}
$$

From the ratio test, it follows that the series converges if $4|x| / 27<1$ and diverges if $4|x| / 27>1$. That is, the series converges if $|x|<27 / 4$ and diverges if $|x|>27 / 4$ so the raduius of convergence is $27 / 4$.
(b) (9 pts) Find the exact interval of convergence.

Solution: The endpoints of the interval of convergence are $x=27 / 4$ and $-27 / 4$. For $x=27 / 4$ the series is

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}} x^{n} & =\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}}(27 / 4)^{n} \\
& =\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}}\left(3^{3} / 2^{2}\right)^{n} \\
& =\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}}\left(3^{3 n} / 2^{2 n}\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad p \text {-series, } p=1 / 2 \leq 1, \text { series diverges }
\end{aligned}
$$

For $x=-27 / 4$ the series is

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}} x^{n} & =\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}}(-27 / 4)^{n} \\
& =\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}}\left(-3^{3} / 2^{2}\right)^{n} \\
& =\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}}(-1)^{n}\left(3^{3 n} / 2^{2 n}\right) \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
\end{aligned}
$$

$1 / \sqrt{n+1}<1 / \sqrt{n}$, and $\lim _{n \rightarrow \infty} 1 / \sqrt{n}=0$ so the series $\sum(-1)^{n} / \sqrt{n}$ converges by the alternating series test. Thus, the interval of convergence is $-27 / 4 \leq x<27 / 4$; equivalently [-27/4, 27/4).
2. Let $f_{n}(x)=\frac{3 n+1-\sin (x)}{2 n+\cos (x)}$.
(a) (9 pts) Show that (f_{n}) converges uniformly on \mathbb{R}. Hint: First decide what the limit function is and then show that convergence is uniform.
Solution: Since $\lim 1 / n=0,-1 / n \leq \sin (x) \leq 1 / n$, and $-1 / n \leq \cos (x) \leq 1 / n$, it follows from the squeeze theorem that for each $x \in \mathbb{R}$, we have

$$
\lim _{n \rightarrow \infty} \sin (x) / n=\lim _{n \rightarrow \infty} \cos (x) / n=0
$$

From the results in the text that the sum, product, and quotient of a limit is the the limit of the respective sum, product, and quotient we have that for each $x \in R$

$$
\lim _{n \rightarrow \infty} \frac{3 n+1-\sin (x)}{2 n+\cos (x)}=\lim _{n \rightarrow \infty} \frac{3+1 / n-\sin (x) / n}{2+\cos (x) / n}=\frac{3+0-0}{2+0}=\frac{3}{2}
$$

Hence the sequence $f_{n}(x)$ converges pointwise to $3 / 2$ for all $x \in \mathbb{R}$. To show that convergence is uniform, it suffices to show that given any $\epsilon>0$ there is an $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\frac{3 n+1-\sin (x)}{2 n+\cos (x)}-\frac{3}{2}\right|<\epsilon \quad \text { for all } n \geq N \text { and all } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\left|\frac{3 n+1-\sin (x)}{2 n+\cos (x)}-\frac{3}{2}\right| & =\left|\frac{6 n+2-2 \sin (x)-6 n-3 \cos (x)}{4 n+2 \cos (x)}\right| \\
& =\left|\frac{2-2 \sin (x)-3 \cos (x)}{4 n+2 \cos (x)}\right|
\end{aligned}
$$

Since $-1 \leq \sin (x) \leq 1$ and $-1 \leq \cos (x) \leq 1$, it follows that

$$
\begin{aligned}
-3 \leq 2-2-3 & \leq 2-2 \sin (x)-3 \cos (x) \leq 2+2+3 \leq 7 \\
0 \leq 4 n-2 & \leq 4 n+2 \cos (x) \leq 4 n+2 \\
\frac{1}{4 n-2} & \geq \frac{1}{4 n+2 \cos (x)} \geq \frac{1}{4 n+2}
\end{aligned}
$$

and hence,

$$
\begin{equation*}
\left|\frac{2-2 \sin (x)-3 \cos (x)}{4 n+2 \cos (x)}\right| \leq \frac{7}{4 n-2} \quad \text { for all } n \in \mathbb{N} \text { and all } x \in \mathbb{R} \tag{2}
\end{equation*}
$$

Note that for any $\epsilon>0$ the follow inequalities are equivalent to each other.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \left\{\left|f(x)-f_{n}(x)\right|: x \in S\right\}=0 \tag{5}
\end{equation*}
$$

From this perspective, the result follows by showing (as was done above), that for all $n \in \mathbb{N}$ and all $x \in \mathbb{R}$

$$
\left|\frac{3 n+1-\sin (x)}{2 n+\cos (x)}-\frac{3}{2}\right|=\left|\frac{2-2 \sin (x)-3 \cos (x)}{4 n+2 \cos (x)}\right| \leq \frac{7}{4 n-2}
$$

Thus, $0 \leq \sup \left\{\left|f(x)-f_{n}(x)\right|: x \in S\right\} \leq 7 /(4 n-2)$, for each $n \geq 1$. Equation (5) then follows using the squeeze theorem and the property that $\lim _{n \rightarrow \infty} 7 /(4 n-2)=0$.
(b) (9 pts) Using your result in part (a) and results in the text, determine $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$ for $a<b$. Be sure to cite any results you use to justify your answer.
Solution: By 25.2 Theorem in the text, if a sequence $\left(f_{n}\right)$ of continuous functions converges uniformly on a closed interval $[a, b]$ to a function f, then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

Thus, for

$$
f_{n}(x)=\frac{3 n+1-\sin (x)}{2 n+\cos (x)} \quad \text { and } \quad f(x)=\frac{3}{2}
$$

and any closed interval $[a, b]$, we have

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} \frac{3 n+1-\sin (x)}{2 n+\cos (x)} d x=\int_{a}^{b} \frac{3}{2} d x=\left.\frac{3}{2} x\right|_{a} ^{b}=\frac{3(b-a)}{2}
$$

3. Let $f_{n}(x)=n^{2} x e^{-n x^{2}}$.
(a) (9 pts) Show that the sequence $\left(f_{n}\right)$ converges pointwise on \mathbb{R} and determine the function $f=\lim _{n \rightarrow \infty} f_{n}$.
Solution: We claim that $f_{n} \rightarrow 0$ pointwise on \mathbb{R}. This is clear for $x=0\left(\right.$ since $\left.f_{n}(0)=0\right)$,
while for $x \neq 0$, l'Hospital's rule (applied twice) gives

$$
\lim _{n \rightarrow \infty} \frac{n^{2} x}{e^{n x^{2}}}=\lim _{n \rightarrow \infty} \frac{2 n x}{x^{2} e^{n x^{2}}}=\frac{2}{x} \lim _{n \rightarrow \infty} \frac{n}{e^{n x^{2}}}=\frac{2}{x} \lim _{n \rightarrow \infty} \frac{1}{x^{2} e^{n x^{2}}}=\frac{2}{x^{3}} \lim _{n \rightarrow \infty} \frac{1}{\left(e^{x^{2}}\right)^{n}}=0,
$$

where at the last step we used $e^{x^{2}}>1$.
(b) (9 pts) Show that (f_{n}) does not converge uniformly on any interval containing 0 .

Solution: Let S be an interval containing 0 . Note that

$$
\begin{equation*}
f_{n}(1 / \sqrt{n})=n^{2} \cdot(1 / \sqrt{n}) \cdot e^{-1}=n^{3 / 2} / e \xrightarrow{n \rightarrow \infty} \infty . \tag{6}
\end{equation*}
$$

Since 0 belongs to the interval S, and since $\lim _{n \rightarrow \infty} 1 / \sqrt{n}=0$, there is an $N \in \mathbb{N}$ such that $1 / \sqrt{n} \in S$ for $n>N$. Using now (6), we infer that

$$
\sup \left\{\left|f_{n}(x)\right|: x \in S, n>N\right\}=\infty
$$

and thus

$$
\limsup _{n \rightarrow \infty}\left\{\left|f_{n}(x)\right|: x \in S\right\}=\infty .
$$

Therefore, the sequence $\left(f_{n}\right)$ does not converge uniformly on S.
(c) (9 pts) Show that (f_{n}) does converge uniformly on any interval of the form $[a, \infty)$ with $a>0$.
Solution: Recall the Taylor series expansion (at 0) for the exponential function: $e^{x}=$ $1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots$, for all $x \in \mathbb{R}$. Therefore, $e^{n x^{2}}=1+n x^{2}+\frac{1}{2} n^{2} x^{4}+\frac{1}{6} n^{3} x^{6}+\cdots$.
Now let $x \geq a>0$; then,

$$
\left|f_{n}(x)\right|=\frac{n^{2} x}{e^{n x^{2}}} \leq \frac{n^{2} x}{\frac{1}{6} n^{3} x^{6}}=\frac{6}{n x^{5}} \leq \frac{6}{n a^{5}} .
$$

Since $\lim _{n \rightarrow \infty} \frac{6}{n a^{5}}=\frac{6}{a^{5}} \lim _{n \rightarrow \infty} \frac{1}{n}=0$, it follows that

$$
\limsup _{n \rightarrow \infty}\left\{\left|f_{n}(x)\right|: x \in[a, \infty)\right\}=0
$$

Therefore, the sequence $\left(f_{n}\right)$ converges uniformly to 0 on the interval $[a, \infty)$.
4. Let $f_{n}(x)=\sqrt{x}+\frac{1}{\sqrt{n}}$ and $f(x)=\sqrt{x}$, for $x \in[0, \infty)$.
(a) (9 pts) Show that $\left(f_{n}\right)$ converges to f uniformly on $[0, \infty)$.

Solution: Note that $\left|f_{n}(x)-f(x)\right|=\frac{1}{\sqrt{n}}$. Since $\lim _{n \rightarrow \infty} 1 / \sqrt{n}=0$, we conclude that

$$
\limsup _{n \rightarrow \infty}\left\{\left|f_{n}(x)-f(x)\right| \mid x \in[0, \infty)\right\}=0
$$

Therefore, the sequence $\left(f_{n}\right)$ converges to f uniformly on $[0, \infty)$
(b) (9 pts) Show that $\left(f_{n}^{2}\right)$ converges to f^{2} pointwise on $[0, \infty)$.

Solution:In general, if $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ (pointwise) on a set $S \subset \mathbb{R}$, then $f_{n} g_{n} \rightarrow f g$ (pointwise) on S, by properties of limits of convergent sequences.
In our situation, we showed in part (a) that $f_{n} \rightarrow f$ (pointwise) on $[0, \infty)$. Therefore, $f_{n}^{2}=f_{n} \cdot f_{n}$ converges pointwise to $f^{2}=f \cdot f$ on $[0, \infty)$.
(c) (9 pts) Show that $\left(f_{n}^{2}\right)$ does not converge uniformly to f^{2} on $[0, \infty)$.

Solution: Note that

$$
f_{n}^{2}(x)-f^{2}(x)=\left(\sqrt{x}+\frac{1}{\sqrt{n}}\right)^{2}-\left(\frac{1}{\sqrt{n}}\right)^{2}=x+2 \frac{\sqrt{x}}{\sqrt{n}}+\frac{1}{n}-\frac{1}{n}=x+2 \frac{\sqrt{x}}{\sqrt{n}}
$$

Therefore, for $x \geq 0$,

$$
\left|f_{n}^{2}(x)-f^{2}(x)\right| \geq x
$$

and thus,

$$
\limsup _{n \rightarrow \infty}\left\{\left|f_{n}^{2}(x)-f^{2}(x)\right|: x \in[0, \infty)\right\}=\infty
$$

Hence, $\left(f_{n}^{2}\right)$ does not converge uniformly to f^{2} on $[0, \infty)$.
5. (10 pts) Show that $\sum_{n=1}^{\infty} \frac{\sin (\sqrt{n} x)}{n^{3 / 2}}$ converges uniformly on \mathbb{R} to a continuous function.

Solution: Note that

$$
\left|\frac{\sin (\sqrt{n} x)}{n^{3 / 2}}\right| \leq \frac{1}{n^{3 / 2}}
$$

Moreover, note that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}
$$

is a p-series with $p=3 / 2>1$, and thus it is a convergent series. Hence, by the Weierstrass M-test (with $M_{n}=1 / n^{3 / 2}$), the series of functions $\sum_{n=1}^{\infty} \frac{\sin (\sqrt{n} x)}{n^{3 / 2}}$ converges uniformly on \mathbb{R}. Let $g(x)=\sum_{n=1}^{\infty} \frac{\sin (\sqrt{n} x)}{n^{3 / 2}}$ be the sum of this series. Note that each of the functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$, $g_{n}(x)=\frac{\sin (\sqrt{n} x)}{n^{3 / 2}}$ is a continuous function (since the sine function is continuous). Therefore, since the sequence of continuous functions $\left(g_{n}\right)$ converges uniformly to the function $g: \mathbb{R} \rightarrow \mathbb{R}$, we conclude that g is also continuous.

