
MATH 3150 Problem Set 4 Fall 2023

For each problem be sure to explain the steps in your argument and fully justify your conclusions.

1. For the power series
∞∑

n=1

22n

(33n)
√

n
xn,

(a) (9 pts) Find the radius of convergence.

Solution: Use the ratio test with an =
22n

(33n)
√

n
xn

lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = lim
n→∞

22n+2|x|n+1(33n)
√

n

22n|x|n(33n+3)
√

n + 1

= lim
n→∞

22|x|
33

√
n

n + 1

= lim
n→∞

4|x|
27

√
1

1 + 1/n

=
4|x|
27

From the ratio test, it follows that the series converges if 4|x|/27 < 1 and diverges if
4|x|/27 > 1. That is, the series converges if |x| < 27/4 and diverges if |x| > 27/4 so the
raduius of convergence is 27/4.

(b) (9 pts) Find the exact interval of convergence.
Solution: The endpoints of the interval of convergence are x = 27/4 and −27/4. For
x = 27/4 the series is

∞∑
n=1

22n

(33n)
√

n
xn =

∞∑
n=1

22n

(33n)
√

n
(27/4)n

=

∞∑
n=1

22n

(33n)
√

n
(33/22)n

=

∞∑
n=1

22n

(33n)
√

n
(33n/22n)

=

∞∑
n=1

1
√

n
p-series, p = 1/2 ≤ 1, series diverges
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For x = −27/4 the series is
∞∑

n=1

22n

(33n)
√

n
xn =

∞∑
n=1

22n

(33n)
√

n
(−27/4)n

=

∞∑
n=1

22n

(33n)
√

n
(−33/22)n

=

∞∑
n=1

22n

(33n)
√

n
(−1)n(33n/22n)

=

∞∑
n=1

(−1)n

√
n

1/
√

n + 1 < 1/
√

n, and limn→∞ 1/
√

n = 0 so the series
∑

(−1)n/
√

n converges by the
alternating series test. Thus, the interval of convergence is −27/4 ≤ x < 27/4; equivalently
[−27/4, 27/4).

2. Let fn(x) =
3n + 1 − sin(x)

2n + cos(x)
.

(a) (9 pts) Show that ( fn) converges uniformly on R. Hint: First decide what the limit function
is and then show that convergence is uniform.
Solution: Since lim 1/n = 0, −1/n ≤ sin(x) ≤ 1/n, and −1/n ≤ cos(x) ≤ 1/n, it follows
from the squeeze theorem that for each x ∈ R, we have

lim
n→∞

sin(x)/n = lim
n→∞

cos(x)/n = 0

From the results in the text that the sum, product, and quotient of a limit is the the limit of
the respective sum, product, and quotient we have that for each x ∈ R

lim
n→∞

3n + 1 − sin(x)
2n + cos(x)

= lim
n→∞

3 + 1/n − sin(x)/n
2 + cos(x)/n

=
3 + 0 − 0

2 + 0
=

3
2

Hence the sequence fn(x) converges pointwise to 3/2 for all x ∈ R. To show that conver-
gence is uniform, it suffices to show that given any ϵ > 0 there is an N ∈ N such that

(1)
∣∣∣∣∣3n + 1 − sin(x)

2n + cos(x)
−

3
2

∣∣∣∣∣ < ϵ for all n ≥ N and all x ∈ R

Note that ∣∣∣∣∣3n + 1 − sin(x)
2n + cos(x)

−
3
2

∣∣∣∣∣ = ∣∣∣∣∣6n + 2 − 2 sin(x) − 6n − 3 cos(x)
4n + 2 cos(x)

∣∣∣∣∣
=

∣∣∣∣∣2 − 2 sin(x) − 3 cos(x)
4n + 2 cos(x)

∣∣∣∣∣
Since −1 ≤ sin(x) ≤ 1 and −1 ≤ cos(x) ≤ 1, it follows that

−3 ≤ 2 − 2 − 3 ≤ 2 − 2 sin(x) − 3 cos(x) ≤ 2 + 2 + 3 ≤ 7
0 ≤ 4n − 2 ≤ 4n + 2 cos(x) ≤ 4n + 2

1
4n − 2

≥
1

4n + 2 cos(x)
≥

1
4n + 2
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and hence,

(2)
∣∣∣∣∣2 − 2 sin(x) − 3 cos(x)

4n + 2 cos(x)

∣∣∣∣∣ ≤ 7
4n − 2

for all n ∈ N and all x ∈ R

Note that for any ϵ > 0 the follow inequalities are equivalent to each other.

7
4n − 2

< ϵ(3)

7 < 4nϵ − 2ϵ
7 + 2ϵ < 4nϵ
7 + 2ϵ

4ϵ
< n(4)

Now given any ϵ > 0, we have that (7 + 2ϵ)/(4ϵ) > 0, so by the Archimedean property
there is an N ∈ N such that (7+ 2ϵ)/(4ϵ) < N. It then follows that for all n ≥ N, inequality
(4) is true; hence, inequality (3) is true. Combining the inqualities (3) and (2) then gives
inequality (1), and the proof is complete.
An alternate approach is to use 24.4 Remark in the text that a squence ( fn) of functions
on a set S ⊆ R converges uniformly to a function f on S if and only if

(5) lim
n→∞

sup{| f (x) − fn(x)| : x ∈ S } = 0

From this perspective, the result follows by showing (as was done above), that for all n ∈ N
and all x ∈ R∣∣∣∣∣3n + 1 − sin(x)

2n + cos(x)
−

3
2

∣∣∣∣∣ = ∣∣∣∣∣2 − 2 sin(x) − 3 cos(x)
4n + 2 cos(x)

∣∣∣∣∣ ≤ 7
4n − 2

Thus, 0 ≤ sup{| f (x)− fn(x)| : x ∈ S } ≤ 7/(4n−2), for each n ≥ 1. Equation (5) then follows
using the squeeze theorem and the property that limn→∞ 7/(4n − 2) = 0.

(b) (9 pts) Using your result in part (a) and results in the text, determine limn→∞

∫ b

a
fn(x) dx for

a < b. Be sure to cite any results you use to justify your answer.
Solution: By 25.2 Theorem in the text, if a sequence ( fn) of continuous functions con-
verges uniformly on a closed interval [a, b] to a function f , then

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f (x) dx

Thus, for

fn(x) =
3n + 1 − sin(x)

2n + cos(x)
and f (x) =

3
2

and any closed interval [a, b], we have

lim
n→∞

∫ b

a

3n + 1 − sin(x)
2n + cos(x)

dx =
∫ b

a

3
2

dx =
3
2

x

∣∣∣∣∣∣b
a

=
3(b − a)

2

3. Let fn(x) = n2xe−nx2
.

(a) (9 pts) Show that the sequence ( fn) converges pointwise on R and determine the function
f = limn→∞ fn.
Solution: We claim that fn → 0 pointwise on R. This is clear for x = 0 (since fn(0) = 0),
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while for x , 0, l’Hospital’s rule (applied twice) gives

lim
n→∞

n2x
enx2 = lim

n→∞

2nx
x2enx2 =

2
x

lim
n→∞

n
enx2 =

2
x

lim
n→∞

1
x2enx2 =

2
x3 lim

n→∞

1
(ex2)n

= 0,

where at the last step we used ex2
> 1.

(b) (9 pts) Show that ( fn) does not converge uniformly on any interval containing 0.
Solution: Let S be an interval containing 0. Note that

(6) fn(1/
√

n) = n2 · (1/
√

n) · e−1 = n3/2/e
n→∞
−−−→ ∞.

Since 0 belongs to the interval S , and since limn→∞ 1/
√

n = 0, there is an N ∈ N such that
1/
√

n ∈ S for n > N. Using now (6), we infer that

sup{| fn(x)| : x ∈ S , n > N} = ∞,

and thus
lim sup

n→∞
{| fn(x)| : x ∈ S } = ∞.

Therefore, the sequence ( fn) does not converge uniformly on S .

(c) (9 pts) Show that ( fn) does converge uniformly on any interval of the form [a,∞) with
a > 0.
Solution: Recall the Taylor series expansion (at 0) for the exponential function: ex =

1 + x + 1
2 x2 + 1

6 x3 + · · · , for all x ∈ R. Therefore, enx2
= 1 + nx2 + 1

2n2x4 + 1
6n3x6 + · · · .

Now let x ≥ a > 0; then,

| fn(x)| =
n2x
enx2 ≤

n2x
1
6n3x6

=
6

nx5 ≤
6

na5 .

Since lim
n→∞

6
na5 =

6
a5 lim

n→∞

1
n
= 0, it follows that

lim sup
n→∞

{| fn(x)| : x ∈ [a,∞)} = 0.

Therefore, the sequence ( fn) converges uniformly to 0 on the interval [a,∞).

4. Let fn(x) =
√

x +
1
√

n
and f (x) =

√
x, for x ∈ [0,∞).

(a) (9 pts) Show that ( fn) converges to f uniformly on [0,∞).

Solution: Note that | fn(x) − f (x)| =
1
√

n
. Since lim

n→∞
1/
√

n = 0, we conclude that

lim sup
n→∞

{| fn(x) − f (x)| | x ∈ [0,∞)} = 0.

Therefore, the sequence ( fn) converges to f uniformly on [0,∞)

(b) (9 pts) Show that ( f 2
n ) converges to f 2 pointwise on [0,∞).

Solution:In general, if fn → f and gn → g (pointwise) on a set S ⊂ R, then fngn → f g
(pointwise) on S , by properties of limits of convergent sequences.
In our situation, we showed in part (a) that fn → f (pointwise) on [0,∞). Therefore,
f 2
n = fn · fn converges pointwise to f 2 = f · f on [0,∞).
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(c) (9 pts) Show that ( f 2
n ) does not converge uniformly to f 2 on [0,∞).

Solution: Note that

f 2
n (x) − f 2(x) =

(
√

x +
1
√

n

)2

−

(
1
√

n

)2

= x + 2
√

x
√

n
+

1
n
−

1
n
= x + 2

√
x
√

n
.

Therefore, for x ≥ 0, ∣∣∣ f 2
n (x) − f 2(x)

∣∣∣ ≥ x,
and thus,

lim sup
n→∞

{∣∣∣ f 2
n (x) − f 2(x)

∣∣∣ : x ∈ [0,∞)
}
= ∞.

Hence, ( f 2
n ) does not converge uniformly to f 2 on [0,∞).

5. (10 pts) Show that
∞∑

n=1

sin(
√

nx)
n3/2 converges uniformly on R to a continuous function.

Solution: Note that ∣∣∣∣∣∣sin(
√

nx)
n3/2

∣∣∣∣∣∣ ≤ 1
n3/2 .

Moreover, note that the series
∞∑

n=1

1
n3/2

is a p-series with p = 3/2 > 1, and thus it is a convergent series. Hence, by the Weierstrass

M-test (with Mn = 1/n3/2), the series of functions
∞∑

n=1

sin(
√

nx)
n3/2 converges uniformly on R.

Let g(x) =
∞∑

n=1

sin(
√

nx)
n3/2 be the sum of this series. Note that each of the functions gn : R→ R,

gn(x) =
sin(
√

nx)
n3/2 is a continuous function (since the sine function is continuous). Therefore,

since the sequence of continuous functions (gn) converges uniformly to the function g : R→ R,
we conclude that g is also continuous.


